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Data Processing

@ In it's raw form, the data has a number of categorical
variables e.g. State € {Kansas, Nebraska, Oklahoma,
Missouri, lowa}. We one-hot-encode these variables.
Furthermore we scale all the variables.

e Columns with repeated information (e.g. State) or only one
level (e.g. Country) are dropped.
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Method

Feature Selection via Gradient Boosting

We find the feature importances computed by an XGBoost model
to deliver the most effective features for optimising overall model

performance.
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(Image taken from: https://xgboost.readthedocs.io/en/latest/tutorials/model.html.)
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Method

Feature Selection via Gradient Boosting

@ Compute feature importance for single trees based on gini
impurity values at splitting nodes.

@ Determine how much splitting on each feature reduced
impurity across all splits in a tree.

@ Sum up feature importance values of all trees and divide by
total number of trees.

@ This delivers a ranked list of features, ordered according to
how useful each feature was in constructing trees within a
model.

Doug Corbin, Oli Deane, Mauro Camara Escudero, Jack Simons LV Datathon



Method

KNN-Regression

We opt to use a KNN-regression model for it's simplicity and
explainability. KNN-regression works by finding the closest K
data-points to a test-point and takes a weighted average of the
output value of these closest K points. These weights are inversely
proportional to the distance from the test-point.

We calculate K, the number of neighbours, via cross-validation.
We get K=16
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Results

Pipeline

Our pipeline:
© Removed features which aren't ethically sound

@ Utilised XGBoost to perform feature selection - this simplified
the data and therefore our models

© Find K via cross validation
@ Perform KNN-Regression with these features and K

A very simple, robust approach which gives a low MAE. It is highly
interpretable.
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Results

We achieved an MAE of 75.2. We provide an overview of our
analysis in the following Jupyter notebook...
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Results

Rejected /Failed Attempts

Feature selection:

@ LASSO - promised to robustly detect complex behaviour
between features. However, among other features, it
suggested that vehicle class wasn't important.

@ Permutation feature importance - seemed to output similar
features to XGBoost's feature selection. However, a slow
algorithm.

@ MLP-VAE - not interpretable but promising. However, not
enough data to learn properly. Might perform better on larger
datasets and using CNN architectures for encoders/decoders.

Regression model:
@ XGBoost - performed worse on the test set.
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