

Approximate Manifold Sampling via the Hug Sampler

Mauro Camara Escudero, Christophe Andrieu, Mark Beaumont

University of Bristol

- 1. A General Set-Up
- 2. Bayesian Inverse Problems (BIP)
- 3. Exact Manifold Sampling
- 4. Approximate Manifold Sampling
- 5. Experiments

A General Set-Up

A General Set-Up

The following setup appears in many areas of statistics.

- p(x) prior on \mathcal{X} .
- $f: \mathcal{X} \to \mathbb{R}$ smooth so $f^{-1}(y)$ is a submanifold of \mathcal{X} for each $y \in \mathbb{R}$.

Interest often lies in sampling from the following distributions.

• Manifold Densities: Restricted prior onto $f^{-1}(y)$

$$\overline{p}(x \mid f(x) = y) \propto p(x) |J_f(x)J_f(x)^\top|^{-1/2}$$

• Filamentary Densities: Concentrated prior around $f^{-1}(y)$

$$p_{\epsilon}(x \mid y) \propto p(x)k_{\epsilon}(\|y - f(x)\|)$$

Typically filamentary densities are a relaxation of manifold densities

$$p_\epsilon(x \mid y) \longrightarrow \overline{p}(x \mid f(x) = y) \qquad \text{as} \qquad \epsilon \longrightarrow 0.$$

Bayesian Inverse Problems (BIP)

Observed data $y \in \mathbb{R}$ is the output of forward function $h : \Theta \to \mathbb{R}$ of parameters $\theta \in \Theta$ perturbed by Gaussian observational noise $\eta \in \mathbb{R}$

$$y = f_{\sigma}(\theta, \eta) = h(\theta) + \sigma \eta \qquad \eta \sim \mathcal{N}(0, \mathbf{I}) \qquad \sigma > 0.$$

The forward function h encapsulates all the complexity of the model.

- forward problem (easy): Simulate y given θ .
- inverse problem (hard): Infer θ given y via BIP posterior $p_{\sigma}(\theta \mid y)$.

Inverse problems are under-determined due to

- $h^{-1}(y) \subset \Theta$ being a set when *h* is not injective.
- η introducing additional non-identifiability (small σ reduces it).

Manifolds in BIP

When h is smooth then

- $h^{-1}(y)$ is a sub-manifold of Θ .
- $f_{\sigma}^{-1}(y)$ is a sub-manifold of $\Theta \times \mathbb{R}$ for any $\sigma > 0$.

BIP Posteriors

- $p_{\sigma}(\theta \mid y) \propto p(\theta)p_{\sigma}(y \mid \theta)$ around $h^{-1}(y)$.
- $p_{\sigma,\epsilon}(\theta,\eta \mid y) \propto p_{\sigma}(\theta,\eta)k_{\epsilon}(\|y f_{\sigma}(\theta,\eta)\|) \text{ around } f_{\sigma}^{-1}(y)$

Here k_{ϵ} is a smoothing kernel.

BIP - Toy Example I

- Observed data: y = 1.0
- Parameter: $\theta = (\theta_0, \theta_1)^\top \in \mathbb{R}^2$
- Forward Function¹: $h(\theta) = \theta_1^2 + 3\theta_0^2(\theta_0^2 1)$

- Manifold $h^{-1}(y)$ independent of σ .
- Manifold $f_{\sigma}^{-1}(y)$ changes shape for different σ .

¹Example taken from Au et al. (2021) and corresponding Jupyter Notebooks.

Sampling from the posterior $p_{\sigma}(\theta \mid y)$ using HMC becomes harder as σ decreases.

Exact Manifold Sampling

To target $\pi(dx) = \overline{p}(x)\mathcal{H}(dx)$ construct a constrained Hamiltonian system

 $\dot{x} = \nabla_v H(x, v)$ $\dot{v} = -\nabla_x H(x, v)$ f(x) = 0.

where $H(x, v) = -\log \overline{p}(x) + ||v||^2/2$ and M = I. This can be integrated with RATTLE/SHAKE which are constrained versions of the Leapfrog. Distinguishing features from Leapfrog are:

- **Projections** to enforce $x \in \mathcal{M}$.
- Reversibility checks (and reprojection).

Constrained HMC II (Lelièvre et al., 2019)

• Position Projections are non-linear and require a solver. Au et al. (2021) shows Newton/symmetric-Newton solvers works well in practice.

At each C-HMC integration step the following operations are expensive:

- Constraint Jacobian: $J_f(x)$
- Correction term: $\log \det(J_f(x)J_f(x)^{\top})$
- Position projections and re-projections.

Position projections can potentially lead to many Jacobian evaluations. Next we see an approximate manifold sampling method to sample from $p_{\sigma,\epsilon}(\theta, \eta \mid y)$ and avoid these expensive operations.

Approximate Manifold Sampling

Generalized Hug

- Generalization of the Hug algorithm by Ludkin & Sherlock (2019) originally used as an alternative to HMC to propose samples almost on the same contour of a density.
- Let $\ell(x)$ log-density of filamentary distribution around $f^{-1}(y)$ and \hat{g} denote normalized gradient at a contour of f.

Algorithm 1: Generalized Hug Kernel (one iteration)

1 Sample auxiliary velocity variable $v_0 \sim \mathcal{N}(0, I)$.

2 for
$$b = 0, \dots, B - 1$$
 do

3 Move:
$$x_{b+\delta/2} = x_b + (\delta/2)v_b$$

4 Reflect:
$$v_{b+1} = v_b - 2\hat{g}_{b+\delta/2}\hat{g}_{b+\delta/2}^\top v_b$$

5 Move:
$$x_{b+1} = x_{b+\delta/2} + (\delta/2)v_{b+1}$$

6 end

7 With probability $a = \exp(\ell(x_B) - \ell(x_0))$ accept x_B , else stay at x_0 .

Dynamic of a particle in \mathbb{R}^n moving with constant speed on *c*-levelset of $f : \mathbb{R}^n \to \mathbb{R}$ with gradient *g* and Hessian *H*

$$\dot{x}_t = v_t$$
$$\dot{v}_t = -\frac{v_t^\top H_t v_t}{\|g_t\|} \hat{g}_t$$

A position-Verlet-like discretization starting from (x_0, v_0) with $v_0 \perp g_0$

$$\begin{split} x_{t+\frac{\delta}{2}} &= x_t + \frac{\delta}{2} v_t \\ v_{t+\delta} &= v_t - \delta \frac{v_t^\top H_{t+\frac{\delta}{2}} v_t}{\|g_{t+\frac{\delta}{2}}\|} \hat{g}_{t+\frac{\delta}{2}} \\ x_{t+\delta} &= x_{t+\frac{\delta}{2}} + \frac{\delta}{2} v_{t+\delta} \end{split}$$

Bounce mechanism is an approximation of curvature information

$$\delta \frac{v_t^\top H_{t+\delta/2} v_t}{\|g_{t+\delta/2}\|} = 2v_t^\top \hat{g}_{t+\delta/2} + \mathcal{O}(\delta^2)$$

- Proposal mechanism can be thought of as approximate discretization.
- Continuous-time dynamic is a Constrained Hamiltonian system that has been solved for its Lagrange multipliers².
- Performance can deteriorate for highly concentrated filamentary distributions.

²Shout-out to Sam Livingstone for noticing this. See also Leimkuhler & Reich (2005).

Comments about Squeezing the Velocity

• Velocity squeezing for $\alpha \in [0, 1)$ is a dumpened velocity projection

$$w_t = \left(\mathbf{I} - \alpha \hat{g}_t \hat{g}_t^{\top}\right) v_t =: S_{\alpha, t} v_t$$

· Velocity distribution now concentrated around tangent plane

$$w_t \sim \mathcal{N}(0, S_{\alpha, t} S_{\alpha, t}^{\top})$$

has variance $(1 - \alpha)^2$ along \hat{g}_t and variance 1 along any $\hat{t}_t \perp \hat{g}_t$.

• Final velocity needs to be unsqueezed for reversibility

$$v_{t+\delta} = \left(\mathbf{I} + \frac{\alpha}{1-\alpha}\hat{g}_{t+\delta}\hat{g}_{t+\delta}^{\top}\right)w_{t+\delta}.$$

Now $||v_t|| \neq ||v_{t+\delta}||$ inducing a reduction in acceptance probability.

Algorithm 2: Thug Kernel (one iteration)

- 1 Sample auxiliary velocity variable $v_0 \sim \mathcal{N}(0, I)$.
- 2 Squeeze: $w_0 = v_0 \alpha \hat{g}_0 \hat{g}_0^\top v_0$.
- **3** for b = 0, ..., B 1 do

4 Move:
$$x_{b+\delta/2} = x_b + (\delta/2)w_b$$

5 **Reflect:**
$$w_{b+1} = w_b - 2\hat{g}_{b+\delta/2}\hat{g}_{b+\delta/2}^\top w_b$$

6 Move:
$$x_{b+1} = x_{b+\delta/2} + (\delta/2)w_{b+1}$$

7 **end**

- 8 Unsqueeze: $v_B = w_B + (\alpha/(1-\alpha))\hat{g}_B\hat{g}_B^\top w_B$.
- 9 With probability $a = \exp(\ell(x_B) \ell(x_0) ||v_B||^2/2 + ||v_0||^2/2)$ accept x_B , otherwise stay at x_0 .

The Trade-off of Squeezing the Velocity

- Optimal value of α unknown. The larger α , the closer we stay to the manifold, however the larger the reduction in acceptance probability due to the mismatch between $||v_0||$ and $||v_B||$.
- When target is highly concentrated experiments show AP increase due to higher precision outweights AP decrease due to mismatch.

Strategy

When targeting the BIP posterior

$$p_{\sigma,\epsilon}(\theta,\eta \mid y) \propto p_{\sigma}(\theta,\eta)k_{\epsilon}(\|y-f_{\sigma}(\theta,\eta)\|),$$

embed Thug in SMC sampler, start with $\alpha_0 = 0$ and increase it adaptively (Andrieu & Thoms, 2008)

$$\tau_{i+1} = \tau_i - \gamma_{i+1}(\hat{a}_i - a^*),$$

where $\tau_i = \text{logit}(\alpha_i)$, \hat{a}_i is the estimate of the acceptance probability from previous round, and a^* is target acceptance probability.

Experiments

Computational Time

Aim of Experiment

Determine if HUG/THUG bring noticeable computational savings with respect to C-HMC.

Algorithm	$f + \nabla f$	ESS	Cost per ESS
THUG	7002	74.68	93.76
HUG	6001	54.87	109.37
CHMC	60442	39.24 (332.29)	1540.37 (181.90)
HMC	6462	3.03	2135.66

True Posterior Distribution

$$\overline{p}(\theta,\eta \mid y) \propto p_{\sigma}(\theta,\eta) |\det J_f(\theta,\eta) J_f(\theta,\eta)^{\top}|^{-1/2}$$

Approximate Posterior Distribution

$$p_{\epsilon,\sigma}(\theta,\eta \mid y) \propto p_{\sigma}(\theta,\eta)k_{\epsilon}(\|f_{\sigma}(\theta,\eta)-y\|).$$

Here k_{ϵ} is Gaussian, y = 1, $\sigma = 0.02$, $\delta = 0.05$, L = B = 5, and $\epsilon = 0.001$.

Thug MCMC I

Aim of Experiment

Determine how acceptance probability deteriorates as step size δ decreases.

• Run Thug, Hug and HMC on lifted filamentary posterior

 $p_{\sigma,\epsilon}(\theta,\eta \mid y) \propto p_{\sigma}(\theta,\eta)k_{\epsilon}(\|y-f_{\sigma}(\theta,\eta)\|)$

for $\epsilon=0.02$ and k_ϵ Epanechnikov, and C-HMC on lifted manifold posterior

 $\overline{p}(\theta,\eta \mid y) \propto p_{\sigma}(\theta,\eta) |J_{f_{\sigma}}(\theta,\eta)J_{f_{\sigma}}(\theta,\eta)^{\top}|^{-1/2}.$

- Run across a grid of noise scale $\sigma \in (1 \times 10^{-5}, 1.0)$ and step-sizes $\delta \in (1 \times 10^{-5}, 1.0)$, keeping number of steps/bounces per iteration B = L = 20 fixed.
- Average acceptance probability across 10 runs of 50 samples.

Thug MCMC II

Acceptance probability decoupled from noise level. Thug/Hug can use up to 2 orders of magnitude larger step-sizes than HMC.

20

Aim of Experiment

Does SMC provide a good framework to adaptively tune Thug?

- Run RWM-SMC, HUG-SMC and adaptive THUG-SMC targeting $p_{\sigma,\epsilon}(\theta, \eta \mid y)$ for $\sigma = 1 \times 10^{-8}$.
- Use N = 5000 particles initialized from the prior and multinomial resampling at each step.
- Tune step-size based on estimated acceptance probability with minimum allowed stepsize of $\delta = 1 \times 10^{-3}$.
- Adaptively choose next ϵ_n using number of unique particles.
- Stop SMC samplers either after $\epsilon \le 1 \times 10^{-10}$, after 200 iterations or when acceptance probability drops to zero.

HUG-SMC and THUG-SMC outperform RWM-SMC in terms of ESS and acceptance probability. Surprisingly, they manage to reach $\epsilon = 1 \times 10^{-10}$ keeping $\delta = 1 \times 10^{-3}$. Importantly when $p_{\sigma,\epsilon}$ is concentrated enough, THUG-SMC outperforms HUG-SMC.

- How to compare samples from manifold and filamentary distributions?
- Does the ESS make sense on manifolds? Could derive a better metric.
- Develop approximate manifold sampling algorithms for $\dim(\mathcal{Y})\gg 1.$
- Experiments with models where $\dim(\Theta)$ large.
- Apply these methods to other areas (ABC, SSM, motion control, etc).

Thank you

References

- Andrieu, C. and Thoms, J. A tutorial on adaptive mcmc. *Statistics and Computing*, 18(4):343–373, Dec 2008. ISSN 1573-1375. doi: 10.1007/s11222-008-9110-y. URL *https://doi.org/10.1007/s11222-008-9110-y*.
- Au, K. X., Graham, M. M., and Thiery, A. H. Manifold lifting: scaling mcmc to the vanishing noise regime, 2021.
- Federer, H. Geometric Measure Theory. Classics in Mathematics. Springer Berlin Heidelberg, 2014. ISBN 9783642620102. URL https://books.google.co.uk/books?id=jld-BgAAQBAJ.

- Leimkuhler, B. and Reich, S. *Simulating Hamiltonian Dynamics*. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2005. doi: 10.1017/CBO9780511614118.
- Lelièvre, T., Rousset, M., and Stoltz, G. Hybrid monte carlo methods for sampling probability measures on submanifolds, 2019.
- Ludkin, M. and Sherlock, C. Hug and hop: a discrete-time, non-reversible markov chain monte-carlo algorithm, 2019. URL *https://arxiv.org/abs/1907.13570*.

THUG MCMC III

Aim of Experiment

Does the acceptance probability of Hug/Thug deteriorate at slower rate than HMC/RM-HMC with respect to step size?

• Run Thug, Hug, RM-HMC and HMC to target filamentary posterior

 $p_{\sigma}(\theta \mid y) \propto p(\theta) \mathcal{N}(h(\theta), \sigma^2 \mathbf{I}).$

and C-HMC to target lifted manifold posterior

 $\overline{p}(\theta,\eta \mid y) \propto p(\theta)p(\eta)|J_{f_{\sigma}}(\theta,\eta)J_{f_{\sigma}}(\theta,\eta)^{\top}|^{-1/2}$

- Run across a grid of noise scale $\sigma \in (1 \times 10^{-5}, 1.0)$ and step-sizes $\delta \in (1 \times 10^{-5}, 1.0)$, keeping number of steps/bounces per iteration B = L = 20 fixed.
- Average acceptance probability across 10 runs of 50 samples.

Thug MCMC IV

HMC and RM-HMC need $\mathcal{O}(\delta) = \mathcal{O}(\sigma)$ for a good acceptance probability. Hug and Thug can achieve the same acceptance probability with 3 order of magnitude larger step-size.

Acceptance Probability vs Discretization Order

• Ludkin & Sherlock (2019) showed that when $f = \ell$, *H* is γ -Lipschitz and bounded above by $\beta > 0$ Hug satisfies

$$|\ell_B - \ell_0| \le \frac{\delta^2}{8} ||v_0||^2 (2\beta + \gamma T ||v_0||) =: \mathcal{B}_{\text{HUG}}$$

Thug satisfies a tighter bound when $\alpha > 0$ and $\hat{g}_0^\top v_0 \neq 0$

$$|\ell_B - \ell_0| \leq \mathcal{B}_{\text{HUG}} - \frac{\alpha(2-\alpha)\delta^2(\hat{g}_0^\top v_0)^2}{8}(2\beta + \gamma T ||v_0||) =: \mathcal{B}_{\text{THUG}}.$$

• When $f \neq \ell$ will require assumptions on relationship between f and ℓ

$$p_{\epsilon}(x \mid y) \propto p(x)k_{\epsilon}(\|y - f(x)\|)$$

For a Partitioned ODE

$$\dot{x} = F_1(x, v)$$
$$\dot{v} = F_2(x, v)$$

the Generalized Position Verlet (GPV) integrator

$$\begin{aligned} x_{n+1/2} &= x_n + \frac{\delta}{2} F_1(x_{n+1/2}, v_n) \\ v_{n+1} &= v_n + \frac{\delta}{2} \left[F_2(x_{n+1/2}, v_n) + F_2(x_{n+1/2}, v_{n+1}) \right] \\ x_{n+1} &= x_{n+1/2} + \frac{\delta}{2} F_1(x_{n+1/2}, v_{n+1}) \end{aligned}$$

is implicit, second-order, symmetric and symplectic.

For a Separable ODE

$$\dot{x} = F_1(v)$$
$$\dot{v} = F_2(x)$$

the GPV integrator

$$x_{n+1/2} = x_n + \frac{\delta}{2}F_1(v_n)$$

$$v_{n+1} = v_n + \delta F_2(x_{n+1/2})$$

$$x_{n+1} = x_{n+1/2} + \frac{\delta}{2}F_1(v_{n+1})$$

is **explicit**, second-order, symmetric and symplectic.

Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable system is implicit, it turns out that one can actually solve explicitly for v_{n+1} in the velocity update.

$$v_{n+1} = \underbrace{v_n - \frac{\delta}{2} \frac{v_n^\top H_F(x_{n+1/2}v_n)}{\|\nabla_x F(x_{n+1/2})\|} \widehat{\nabla_x F(x_{n+1/2})}}_{:=a} \\ \underbrace{-\frac{\delta}{2} \frac{\widehat{\nabla_x F(x_{n+1/2})}}_{\|\nabla_x F(x_{n+1/2})\|}}_{=:b} v_{n+1}^\top H_F(x_{n+1/2})v_{n+1},$$

then the expression has the form (we write $H_{n+1/2} = H(x_{n+1/2})$)

$$v_{n+1} = a + bv_{n+1}^{\top} H_{n+1/2} v_{n+1}.$$

This can be solved by solving a simple quadratic equation for ϑ

$$c_1\vartheta^2 + (2c_2 - 1)\vartheta + c_3 = 0$$

where

$$c_1 = b^{\top} H_{n+1/2} b$$

 $c_2 = a^{\top} H_{n+1/2} b$
 $c_3 = a^{\top} H_{n+1/2} a.$

Interestingly, this discretization works well for sampling from filamentary distributions only when the initial velocity is perpendicular to the gradient at the initial position $v_0 \perp \hat{g}_0$, otherwise it quickly blows up. This is in contrast with the generalised Hug algorithm which remains stable thanks to the BPS reflection mechanism.

Let π be a filamentary distribution whose limiting manifold distribution is $\overline{\pi}$. A general approximate manifold sampling algorithm consists of a triplet (H_p, Φ, H_a) where

- H_p is a Hamiltonian system that forms the base of our proposal mechanism. A good H_p would follow/stay close to \mathcal{M} and perhaps be a good Hamiltonian system for $\overline{\pi}$.
- Φ is a reversible (or skew-reversible) integrator for H_p of suitably high order and preferably with $|\det J_{\Phi}| = 1$, symplecticity is desired but not needed.
- H_a is a Hamiltonian that determines which samples get accepted or rejected. This should include π for the algorithm to be correct.

Contours of Filamentary Distribution

Tangential Hug Stays closer

Manifold Distributions I

Transformation of Random Variable by Diffeomorphism

Let *X* be an \mathbb{R}^n -valued random vector with density p_X . Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism and Y = f(X). Then

$$p_Y(y)dy = p_X(f^{-1}(y))|\det J_{f^{-1}}(y)|dy$$

The Co-Area formula for Lipschitz functions generalizes the above results to non-injective functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold

Let *X* be an \mathbb{R}^n -valued random vector with density p_X . Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a smooth function with n > m, and let $y \in \mathbb{R}^m$. Then on the sub-manifold $f^{-1}(y)$

 $p(x \mid f(x) = y) \mathcal{H}^{n-m}(dx) \propto p_X(x) |\det(J_f(x)J_f(x)^{\top})|^{-1/2} \mathcal{H}^{n-m}(dx)$

Assumption 2

 π admits a density with respect to the Hausdorff measure on $\mathcal{M}.$

Manifold Distribution

Let $X : \Omega \to \mathbb{R}^n$ be a vector-valued random variable with distribution π and finite covariance matrix $\mathbb{V}_{\pi}[X]$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Consider $y \in \mathbb{R}$ fixed, then at any point $\xi \in f^{-1}(y)$ we denote by $\hat{g}(\xi)$ the normalized gradient of f and by $\mathsf{T}(\xi) = \{\hat{t}_1(\xi), \dots, \hat{t}_{n-1}(\xi)\}$ a basis for the tangent space at ξ . Then π is a manifold distribution if $\forall \xi \in \mathbb{R}^n$ and $\forall \hat{t}_i(\xi) \in \mathsf{T}(\xi)$

 $\hat{g}(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{g}(\xi) = 0$ and $\hat{t}_i(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{t}_i(\xi) > 0.$

Typically obtained as limiting posterior density as some scale parameter goes to zero.

Manifold Distribution

Let U be an \mathbb{R}^n -valued random variable, and $f : \mathbb{R}^n \to \mathbb{R}^m$ be smooth. Let $\mathcal{K}(y, du)$ be a regular conditional distribution of U given $\sigma(f(U))$ and let \mathcal{H}_y^{n-m} be the Hausdorff measure on $f^{-1}(y)$. If $\mathcal{K}(y, \cdot) \ll \mathcal{H}_y^{n-m}$ then $\pi = \mathcal{K}(y, \cdot)$ is a manifold distribution.

Manifold Distribution IV

Graham's Theorem Revisited

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $U : \Omega \to \mathbb{R}^n$ be a random vector with distribution P_U and density p_U with respect to λ^n , the Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Let n > m and $f : \mathbb{R}^n \to \mathbb{R}^m$ be a smooth function with Jacobian matrix $J_f(u)$ having full row-rank λ^n -almost everywhere, and let $f \circ U$ have distribution $P_f = P_U \circ f^{-1}$. Let $\sigma(f)$ be the sigma-algebra generated by $f \circ U$, and let $\phi : \mathbb{R}^n \to \mathbb{R}$ be a $\mathcal{B}(\mathbb{R}^n)$ -measurable test function. Let K(y, du) be a RCD of U given $\sigma(f)$ from $(\mathbb{R}^m, \sigma(f))$ to $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, such that $K(y, \cdot) \ll \mathcal{H}^{n-m}$. Then expectations with respect to K can be written as

$$\mathbb{E}[\phi(U) \mid f(U) = y] = \int_{f^{-1}(\{y\})} \phi(u) k_y(u) \mathcal{H}^{n-m}(du)$$

where $k_y(u)$ is the density of $K(y, \cdot)$ on $f^{-1}(\{y\})$ with respect to \mathcal{H}^{n-m} , given by

$$k_y(u) \propto p_U(u) \left| \det J_f(u) J_f(u)^\top \right|^{-1/2}$$

Let \mathcal{X} and \mathcal{Y} be manifolds and $f : \mathcal{X} \to \mathcal{Y}$ be smooth.

Regular Value

Then $y \in \mathcal{Y}$ is a **regular value** for f if for all $x \in f^{-1}(y)$ the differential $df_x : \mathcal{T}_x \mathcal{X} \to \mathcal{T}_y \mathcal{Y}$ is surjective. (alternatively, f is a submersion at every $x \in f^{-1}(y)$).

Preimage Theorem

If $y \in \mathcal{Y}$ is a regular value of f then $f^{-1}(y)$ is a submanifold of \mathcal{X} .

Filamentary Distributions

Assumption 1

Manifold of interest has co-dimension 1.

Filamentary Distribution

Let $X : \Omega \to \mathbb{R}^n$ be a vector-valued random variable with distribution π and finite covariance matrix $\mathbb{V}_{\pi}[X]$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Consider $y \in \mathbb{R}$ fixed, then at any point $\xi \in f^{-1}(y)$ we denote by $\hat{g}(\xi)$ the normalized gradient of f and by $\mathsf{T}(\xi) = \{\hat{t}_1(\xi), \ldots, \hat{t}_{n-1}(\xi)\}$ a basis for the tangent space at ξ . We say that π is a filamentary distribution if

$$\forall \xi \in \mathbb{R}^n, \quad \forall \hat{t}_i(\xi) \in \mathsf{T}(\xi) \qquad 0 < \hat{g}(\xi)^\top \mathbb{V}_{\pi}[X] \hat{g}(\xi) \ll \hat{t}_i(\xi)^\top \mathbb{V}_{\pi}[X] \hat{t}_i(\xi).$$

In practice one doesn't need to check the definition, it will be clear if the posterior has a filamentary structure.

- Filamentary distributions are highly concentrated around a submanifold.
- Orthogonal scaling \ll tangential scaling.