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A General Set-Up



A General Set-Up

The following setup appears in many areas of statistics.

• p(x) prior on X .

• f : X → R smooth so f−1(y) is a submanifold of X for each y ∈ R.

Interest often lies in sampling from the following distributions.

• Manifold Densities: Restricted prior onto f−1(y)

p(x | f(x) = y) ∝ p(x)|Jf (x)Jf (x)⊤|−1/2

• Filamentary Densities: Concentrated prior around f−1(y)

pϵ(x | y) ∝ p(x)kϵ(∥y − f(x)∥)

Typically filamentary densities are a relaxation of manifold densities

pϵ(x | y) −→ p(x | f(x) = y) as ϵ −→ 0.
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Bayesian Inverse Problems (BIP)



BIP - Set up I

Observed data y ∈ R is the output of forward function h : Θ → R of
parameters θ ∈ Θ perturbed by Gaussian observational noise η ∈ R

y = fσ(θ, η) = h(θ) + ση η ∼ N (0, I) σ > 0.

The forward function h encapsulates all the complexity of the model.

• forward problem (easy): Simulate y given θ.

• inverse problem (hard): Infer θ given y via BIP posterior pσ(θ | y).

Inverse problems are under-determined due to

• h−1(y) ⊂ Θ being a set when h is not injective.

• η introducing additional non-identifiability (small σ reduces it).
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BIP - Set up II

Manifolds in BIP
When h is smooth then

• h−1(y) is a sub-manifold of Θ.

• f−1
σ (y) is a sub-manifold of Θ× R for any σ > 0.

BIP Posteriors

• pσ(θ | y) ∝ p(θ)pσ(y | θ) around h−1(y).

• pσ,ϵ(θ, η | y) ∝ pσ(θ, η)kϵ(∥y − fσ(θ, η)∥) around f−1
σ (y)

Here kϵ is a smoothing kernel.
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BIP - Toy Example I

• Observed data: y = 1.0

• Parameter: θ = (θ0, θ1)
⊤ ∈ R2

• Forward Function1: h(θ) = θ21 + 3θ20(θ
2
0 − 1)

• Manifold h−1(y) independent of σ.

• Manifold f−1
σ (y) changes shape for different σ.

1Example taken from Au et al. (2021) and corresponding Jupyter Notebooks.
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BIP - Toy Example II

Sampling from the posterior pσ(θ | y) using HMC becomes harder as σ
decreases.
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Exact Manifold Sampling



Constrained HMC I (Lelièvre et al., 2019)

To target π(dx) = p(x)H(dx) construct a constrained Hamiltonian system

ẋ = ∇vH(x, v)

v̇ = −∇xH(x, v)

f(x) = 0.

where H(x, v) = − log p(x) + ∥v∥2/2 andM = I. This can be integrated
with RATTLE/SHAKE which are constrained versions of the Leapfrog.
Distinguishing features from Leapfrog are:

• Projections to enforce x ∈ M.

• Reversibility checks (and reprojection).
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Constrained HMC II (Lelièvre et al., 2019)

• Position Projections are non-linear and require a solver. Au et al. (2021)
shows Newton/symmetric-Newton solvers works well in practice.

x0

v0 x̃L

ṽL

xL

vL
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Constrained HMC III (Lelièvre et al., 2019)

At each C-HMC integration step the following operations are expensive:

• Constraint Jacobian: Jf (x)

• Correction term: log det(Jf (x)Jf (x)⊤)

• Position projections and re-projections.

Position projections can potentially lead to many Jacobian evaluations. Next
we see an approximate manifold sampling method to sample from
pσ,ϵ(θ, η | y) and avoid these expensive operations.
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Approximate Manifold Sampling



Visualization of Hug
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Visualization of Hug
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Visualization of Hug
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Visualization of Hug
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Visualization of Hug
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Generalized Hug

• Generalization of the Hug algorithm by Ludkin & Sherlock (2019)
originally used as an alternative to HMC to propose samples almost on
the same contour of a density.

• Let ℓ(x) log-density of filamentary distribution around f−1(y) and ĝ
denote normalized gradient at a contour of f .

Algorithm 1: Generalized Hug Kernel (one iteration)

1 Sample auxiliary velocity variable v0 ∼ N (0, I).
2 for b = 0, . . . , B − 1 do
3 Move: xb+δ/2 = xb + (δ/2)vb
4 Reflect: vb+1 = vb − 2ĝb+δ/2ĝ

⊤
b+δ/2vb

5 Move: xb+1 = xb+δ/2 + (δ/2)vb+1

6 end
7 With probability a = exp(ℓ(xB)− ℓ(x0)) accept xB , else stay at x0.
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Intuition Behind Generalized Hug I

Dynamic of a particle in Rn moving with constant speed on c-levelset of
f : Rn → R with gradient g and Hessian H

ẋt = vt

v̇t = −v⊤t Htvt
∥gt∥

ĝt.

A position-Verlet-like discretization starting from (x0, v0) with v0 ⊥ g0

xt+ δ
2
= xt +

δ

2
vt

vt+δ = vt − δ
v⊤t Ht+ δ

2
vt

∥gt+ δ
2
∥

ĝt+ δ
2

xt+δ = xt+ δ
2
+

δ

2
vt+δ
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Intuition Behind Generalized Hug II

Bounce mechanism is an approximation of curvature information

δ
v⊤t Ht+δ/2vt

∥gt+δ/2∥
= 2v⊤t ĝt+δ/2 +O(δ2)

• Proposal mechanism can be thought of as approximate discretization.

• Continuous-time dynamic is a Constrained Hamiltonian system that has
been solved for its Lagrange multipliers2.

• Performance can deteriorate for highly concentrated filamentary
distributions.

2Shout-out to Sam Livingstone for noticing this. See also Leimkuhler & Reich (2005).
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Visualization of Thug
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Visualization of Thug
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Visualization of Thug
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Visualization of Thug
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Visualization of Thug
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Visualization of Thug
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Comments about Squeezing the Velocity

• Velocity squeezing for α ∈ [0, 1) is a dumpened velocity projection

wt =
(
I− αĝtĝ

⊤
t

)
vt =: Sα,tvt

• Velocity distribution now concentrated around tangent plane

wt ∼ N (0, Sα,tS
⊤
α,t)

has variance (1− α)2 along ĝt and variance 1 along any t̂t ⊥ ĝt.

• Final velocity needs to be unsqueezed for reversibility

vt+δ =

(
I +

α

1− α
ĝt+δ ĝ

⊤
t+δ

)
wt+δ.

Now ∥vt∥ ̸= ∥vt+δ∥ inducing a reduction in acceptance probability.
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Thug Algorithm

Algorithm 2: Thug Kernel (one iteration)

1 Sample auxiliary velocity variable v0 ∼ N (0, I).
2 Squeeze: w0 = v0 − αĝ0ĝ

⊤
0 v0.

3 for b = 0, . . . , B − 1 do
4 Move: xb+δ/2 = xb + (δ/2)wb

5 Reflect: wb+1 = wb − 2ĝb+δ/2ĝ
⊤
b+δ/2wb

6 Move: xb+1 = xb+δ/2 + (δ/2)wb+1

7 end
8 Unsqueeze: vB = wB + (α/(1− α))ĝB ĝ

⊤
BwB .

9 With probability a = exp(ℓ(xB)− ℓ(x0)−∥vB∥2/2 + ∥v0∥2/2) accept
xB , otherwise stay at x0.
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The Trade-off of Squeezing the Velocity

• Optimal value of α unknown. The larger α, the closer we stay to the
manifold, however the larger the reduction in acceptance probability
due to the mismatch between ∥v0∥ and ∥vB∥.

• When target is highly concentrated experiments show AP increase due
to higher precision outweights AP decrease due to mismatch.

Strategy
When targeting the BIP posterior

pσ,ϵ(θ, η | y) ∝ pσ(θ, η)kϵ(∥y − fσ(θ, η)∥),

embed Thug in SMC sampler, start with α0 = 0 and increase it adaptively
(Andrieu & Thoms, 2008)

τi+1 = τi − γi+1(âi − a∗),

where τi = logit(αi), âi is the estimate of the acceptance probability from
previous round, and a∗ is target acceptance probability.
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Experiments



Computational Time

Aim of Experiment
Determine if HUG/THUG bring noticeable computational savings with
respect to C-HMC.

Algorithm f +∇f ESS Cost per ESS
THUG 7002 74.68 93.76
HUG 6001 54.87 109.37
CHMC 60442 39.24 (332.29) 1540.37 (181.90)
HMC 6462 3.03 2135.66

True Posterior Distribution

p(θ, η | y) ∝ pσ(θ, η)| det Jf (θ, η)Jf (θ, η)⊤|−1/2

Approximate Posterior Distribution

pϵ,σ(θ, η | y) ∝ pσ(θ, η)kϵ(∥fσ(θ, η)− y∥).

Here kϵ is Gaussian, y = 1, σ = 0.02, δ = 0.05, L = B = 5, and ϵ = 0.001.
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Thug MCMC I

Aim of Experiment
Determine how acceptance probability deteriorates as step size δ decreases.

• Run Thug, Hug and HMC on lifted filamentary posterior

pσ,ϵ(θ, η | y) ∝ pσ(θ, η)kϵ(∥y − fσ(θ, η)∥)

for ϵ = 0.02 and kϵ Epanechnikov, and C-HMC on lifted manifold
posterior

p(θ, η | y) ∝ pσ(θ, η)|Jfσ (θ, η)Jfσ (θ, η)⊤|−1/2.

• Run across a grid of noise scale σ ∈ (1× 10−5, 1.0) and step-sizes
δ ∈ (1× 10−5, 1.0), keeping number of steps/bounces per iteration
B = L = 20 fixed.

• Average acceptance probability across 10 runs of 50 samples.
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Thug MCMC II

Acceptance probability decoupled from noise level. Thug/Hug can use up to
2 orders of magnitude larger step-sizes than HMC.
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SMC-Thug I

Aim of Experiment
Does SMC provide a good framework to adaptively tune Thug?

• Run RWM-SMC, HUG-SMC and adaptive THUG-SMC targeting
pσ,ϵ(θ, η | y) for σ = 1× 10−8.

• Use N = 5000 particles initialized from the prior and multinomial
resampling at each step.

• Tune step-size based on estimated acceptance probability with
minimum allowed stepsize of δ = 1× 10−3.

• Adaptively choose next ϵn using number of unique particles.

• Stop SMC samplers either after ϵ ≤ 1× 10−10, after 200 iterations or
when acceptance probability drops to zero.
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SMC-Thug II

HUG-SMC and THUG-SMC outperform RWM-SMC in terms of ESS and
acceptance probability. Surprisingly, they manage to reach ϵ = 1× 10−10

keeping δ = 1× 10−3. Importantly when pσ,ϵ is concentrated enough,
THUG-SMC outperforms HUG-SMC.
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Limitations and Future Directions

• How to compare samples from manifold and filamentary distributions?

• Does the ESS make sense on manifolds? Could derive a better metric.

• Develop approximate manifold sampling algorithms for dim(Y) ≫ 1.

• Experiments with models where dim(Θ) large.

• Apply these methods to other areas (ABC, SSM, motion control, etc).
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Thank you
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THUGMCMC III

Aim of Experiment
Does the acceptance probability of Hug/Thug deteriorate at slower rate
than HMC/RM-HMC with respect to step size?

• Run Thug, Hug, RM-HMC and HMC to target filamentary posterior

pσ(θ | y) ∝ p(θ)N (h(θ), σ2I).

and C-HMC to target lifted manifold posterior

p(θ, η | y) ∝ p(θ)p(η)|Jfσ (θ, η)Jfσ (θ, η)⊤|−1/2

• Run across a grid of noise scale σ ∈ (1× 10−5, 1.0) and step-sizes
δ ∈ (1× 10−5, 1.0), keeping number of steps/bounces per iteration
B = L = 20 fixed.

• Average acceptance probability across 10 runs of 50 samples.
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Thug MCMC IV

HMC and RM-HMC need O(δ) = O(σ) for a good acceptance probability.
Hug and Thug can achieve the same acceptance probability with 3 order of
magnitude larger step-size.
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Acceptance Probability vs Discretization Order

• Ludkin & Sherlock (2019) showed that when f = ℓ, H is γ-Lipschitz
and bounded above by β > 0 Hug satisfies

|ℓB − ℓ0| ≤
δ2

8
∥v0∥2(2β + γT∥v0∥) =: BHUG

Thug satisfies a tighter bound when α > 0 and ĝ⊤0 v0 ̸= 0

|ℓB − ℓ0| ≤ BHUG − α(2− α)δ2(ĝ⊤0 v0)
2

8
(2β + γT∥v0∥) =: BTHUG.

• When f ̸= ℓ will require assumptions on relationship between f and ℓ

pϵ(x | y) ∝ p(x)kϵ(∥y − f(x)∥)
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GPV for Partitioned Systems

For a Partitioned ODE

ẋ = F1(x, v)

v̇ = F2(x, v)

the Generalized Position Verlet (GPV) integrator

xn+1/2 = xn +
δ

2
F1(xn+1/2, vn)

vn+1 = vn +
δ

2

[
F2(xn+1/2, vn) + F2(xn+1/2, vn+1)

]
xn+1 = xn+1/2 +

δ

2
F1(xn+1/2, vn+1)

is implicit, second-order, symmetric and symplectic.
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GPV for Separable Systems

For a Separable ODE

ẋ = F1(v)

v̇ = F2(x)

the GPV integrator

xn+1/2 = xn +
δ

2
F1(vn)

vn+1 = vn + δF2(xn+1/2)

xn+1 = xn+1/2 +
δ

2
F1(vn+1)

is explicit, second-order, symmetric and symplectic.
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Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable
system is implicit, it turns out that one can actually solve explicitly for vn+1

in the velocity update.

vn+1 = vn − δ

2

v⊤n HF (xn+1/2vn

∥∇xF (xn+1/2)∥
∇̂xF (xn+1/2)︸ ︷︷ ︸

:=a

−δ

2

∇̂xF (xn+1/2)

∥∇xF (xn+1/2)∥︸ ︷︷ ︸
=:b

v⊤n+1HF (xn+1/2)vn+1,

then the expression has the form (we writeHn+1/2 = H(xn+1/2))

vn+1 = a+ bv⊤n+1Hn+1/2vn+1.

This can be solved by solving a simple quadratic equation for ϑ

c1ϑ
2 + (2c2 − 1)ϑ+ c3 = 0
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Alternative Integrator II

where

c1 = b⊤Hn+1/2b

c2 = a⊤Hn+1/2b

c3 = a⊤Hn+1/2a.

Interestingly, this discretization works well for sampling from filamentary
distributions only when the initial velocity is perpendicular to the gradient at
the initial position v0 ⊥ ĝ0, otherwise it quickly blows up. This is in contrast
with the generalised Hug algorithm which remains stable thanks to the BPS
reflection mechanism.
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A General Approximate Manifold Sampling Framework

Let π be a filamentary distribution whose limiting manifold distribution is π.
A general approximate manifold sampling algorithm consists of a triplet
(Hp,Φ,Ha) where

• Hp is a Hamiltonian system that forms the base of our proposal
mechanism. A goodHp would follow/stay close toM and perhaps be a
good Hamiltonian system for π.

• Φ is a reversible (or skew-reversible) integrator forHp of suitably high
order and preferably with | det JΦ| = 1, symplecticity is desired but not
needed.

• Ha is a Hamiltonian that determines which samples get accepted or
rejected. This should include π for the algorithm to be correct.
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Contours of Filamentary Distribution
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Tangential Hug Stays closer
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Manifold Distributions I

Transformation of Random Variable by Diffeomorphism
Let X be an Rn-valued random vector with density pX . Let f : Rn → Rn

be a diffeomorphism and Y = f(X). Then

pY (y)dy = pX(f−1(y))| det Jf−1(y)|dy

The Co-Area formula for Lipschitz functions generalizes the above results to
non-injective functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold
Let X be an Rn-valued random vector with density pX . Let f : Rn → Rm

be a smooth function with n > m, and let y ∈ Rm. Then on the
sub-manifold f−1(y)

p(x | f(x) = y)Hn−m(dx) ∝ pX(x)| det(Jf (x)Jf (x)⊤)|−1/2Hn−m(dx)
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Manifold Distributions II

Assumption 2
π admits a density with respect to the Hausdorff measure onM.

Manifold Distribution
Let X : Ω → Rn be a vector-valued random variable with distribution π
and finite covariance matrix Vπ[X], and let f : Rn → R be a smooth
function. Consider y ∈ R fixed, then at any point ξ ∈ f−1(y) we denote
by ĝ(ξ) the normalized gradient of f and by T(ξ) = {t̂1(ξ), . . . , t̂n−1(ξ)}
a basis for the tangent space at ξ. Then π is a manifold distribution if
∀ξ ∈ Rn and ∀t̂i(ξ) ∈ T(ξ)

ĝ(ξ)⊤Vπ[X]ĝ(ξ) = 0 and t̂i(ξ)
⊤Vπ[X]t̂i(ξ) > 0.

Typically obtained as limiting posterior density as some scale parameter
goes to zero.
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Manifold Distribution III

Manifold Distribution
Let U be an Rn-valued random variable, and f : Rn → Rm be smooth.
Let K(y, du) be a regular conditional distribution of U given σ(f(U)) and
letHn−m

y be the Hausdorff measure on f−1(y). If K(y, ·) ≪ Hn−m
y then

π = K(y, ·) is a manifold distribution.

39



Manifold Distribution IV

Graham’s Theorem Revisited
Let (Ω,F ,P) be a probability space, U : Ω → Rn be a random vector with
distribution PU and density pU with respect to λn, the Lebesgue measure
on (Rn,B(Rn)). Let n >m and f : Rn → Rm be a smooth function with
Jacobian matrix Jf (u) having full row-rank λn-almost everywhere, and let
f ◦ U have distribution Pf = PU ◦ f−1. Let σ(f) be the sigma-algebra
generated by f ◦ U , and let ϕ : Rn → R be a B(Rn)-measurable test
function. Let K(y, du) be a RCD of U given σ(f) from (Rm, σ(f)) to
(Rn,B(Rn)), such that K(y, ·) ≪ Hn−m. Then expectations with respect
to K can be written as

E[ϕ(U) | f(U) = y] =

∫
f−1({y})

ϕ(u)ky(u)Hn−m(du)

where ky(u) is the density of K(y, ·) on f−1({y}) with respect toHn−m,
given by

ky(u) ∝ pU (u)
∣∣det Jf (u)Jf (u)⊤∣∣−1/2

.
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When is f−1(y) a submanifold?

Let X and Y be manifolds and f : X → Y be smooth.

Regular Value
Then y ∈ Y is a regular value for f if for all x ∈ f−1(y) the differential
dfx : TxX → TyY is surjective. (alternatively, f is a submersion at every
x ∈ f−1(y)).

Preimage Theorem
If y ∈ Y is a regular value of f then f−1(y) is a submanifold of X .
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Filamentary Distributions

Assumption 1
Manifold of interest has co-dimension 1.

Filamentary Distribution
Let X : Ω → Rn be a vector-valued random variable with distribution π
and finite covariance matrix Vπ[X], and let f : Rn → R be a smooth
function. Consider y ∈ R fixed, then at any point ξ ∈ f−1(y) we denote
by ĝ(ξ) the normalized gradient of f and by T(ξ) = {t̂1(ξ), . . . , t̂n−1(ξ)}
a basis for the tangent space at ξ. We say that π is a filamentary
distribution if

∀ξ ∈ Rn, ∀t̂i(ξ) ∈ T(ξ) 0 < ĝ(ξ)⊤Vπ[X]ĝ(ξ) ≪ t̂i(ξ)
⊤Vπ[X]t̂i(ξ).

In practice one doesn’t need to check the definition, it will be clear if the
posterior has a filamentary structure.

• Filamentary distributions are highly concentrated around a submanifold.
• Orthogonal scaling≪ tangential scaling. 42
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