Approximate Manifold Sampling via the Hug Sampler

Mauro Camara Escudero, Christophe Andrieu, Mark Beaumont

University of Bristol

Table of contents

1. A General Set-Up
2. Bayesian Inverse Problems (BIP)
3. Exact Manifold Sampling
4. Approximate Manifold Sampling
5. Experiments

A General Set-Up

A General Set-Up

The following setup appears in many areas of statistics.

- $p(x)$ prior on \mathcal{X}.
- $f: \mathcal{X} \rightarrow \mathbb{R}$ smooth so $f^{-1}(y)$ is a submanifold of \mathcal{X} for each $y \in \mathbb{R}$.

Interest often lies in sampling from the following distributions.

- Manifold Densities: Restricted prior onto $f^{-1}(y)$

$$
\bar{p}(x \mid f(x)=y) \propto p(x)\left|J_{f}(x) J_{f}(x)^{\top}\right|^{-1 / 2}
$$

- Filamentary Densities: Concentrated prior around $f^{-1}(y)$

$$
p_{\epsilon}(x \mid y) \propto p(x) k_{\epsilon}(\|y-f(x)\|)
$$

Typically filamentary densities are a relaxation of manifold densities

$$
p_{\epsilon}(x \mid y) \longrightarrow \bar{p}(x \mid f(x)=y) \quad \text { as } \quad \epsilon \longrightarrow 0 .
$$

Bayesian Inverse Problems (BIP)

BIP - Set up I

Observed data $y \in \mathbb{R}$ is the output of forward function $h: \Theta \rightarrow \mathbb{R}$ of parameters $\theta \in \Theta$ perturbed by Gaussian observational noise $\eta \in \mathbb{R}$

$$
y=f_{\sigma}(\theta, \eta)=h(\theta)+\sigma \eta \quad \eta \sim \mathcal{N}(0, \mathrm{I}) \quad \sigma>0 .
$$

The forward function h encapsulates all the complexity of the model.

- forward problem (easy): Simulate y given θ.
- inverse problem (hard): Infer θ given y via BIP posterior $p_{\sigma}(\theta \mid y)$.

Inverse problems are under-determined due to

- $h^{-1}(y) \subset \Theta$ being a set when h is not injective.
- η introducing additional non-identifiability (small σ reduces it).

BIP - Set up II

Manifolds in BIP

When h is smooth then

- $h^{-1}(y)$ is a sub-manifold of Θ.
- $f_{\sigma}^{-1}(y)$ is a sub-manifold of $\Theta \times \mathbb{R}$ for any $\sigma>0$.

BIP Posteriors

- $p_{\sigma}(\theta \mid y) \propto p(\theta) p_{\sigma}(y \mid \theta)$ around $h^{-1}(y)$.
- $p_{\sigma, \epsilon}(\theta, \eta \mid y) \propto p_{\sigma}(\theta, \eta) k_{\epsilon}\left(\left\|y-f_{\sigma}(\theta, \eta)\right\|\right)$ around $f_{\sigma}^{-1}(y)$

Here k_{ϵ} is a smoothing kernel.

BIP - Toy Example I

- Observed data: $y=1.0$
- Parameter: $\theta=\left(\theta_{0}, \theta_{1}\right)^{\top} \in \mathbb{R}^{2}$
- Forward Function ${ }^{1}: h(\theta)=\theta_{1}^{2}+3 \theta_{0}^{2}\left(\theta_{0}^{2}-1\right)$

- Manifold $h^{-1}(y)$ independent of σ.
- Manifold $f_{\sigma}^{-1}(y)$ changes shape for different σ.

[^0]
BIP - Toy Example II

Sampling from the posterior $p_{\sigma}(\theta \mid y)$ using HMC becomes harder as σ decreases.

Exact Manifold Sampling

Constrained HMC I (Lelièvre et al., 2019)

To target $\pi(d x)=\bar{p}(x) \mathcal{H}(d x)$ construct a constrained Hamiltonian system

$$
\begin{aligned}
\dot{x} & =\nabla_{v} H(x, v) \\
\dot{v} & =-\nabla_{x} H(x, v) \\
f(x) & =0 .
\end{aligned}
$$

where $H(x, v)=-\log \bar{p}(x)+\|v\|^{2} / 2$ and $M=\mathrm{I}$. This can be integrated with RATTLE/SHAKE which are constrained versions of the Leapfrog. Distinguishing features from Leapfrog are:

- Projections to enforce $x \in \mathcal{M}$.
- Reversibility checks (and reprojection).

Constrained HMC II (Lelièvre et al., 2019)

- Position Projections are non-linear and require a solver. Au et al. (2021) shows Newton/symmetric-Newton solvers works well in practice.

Constrained HMC III (Lelièvre et al., 2019)

At each C-HMC integration step the following operations are expensive:

- Constraint Jacobian: $J_{f}(x)$
- Correction term: $\log \operatorname{det}\left(J_{f}(x) J_{f}(x)^{\top}\right)$
- Position projections and re-projections.

Position projections can potentially lead to many Jacobian evaluations. Next we see an approximate manifold sampling method to sample from $p_{\sigma, \epsilon}(\theta, \eta \mid y)$ and avoid these expensive operations.

Approximate Manifold Sampling

Visualization of Hug

Generalized Hug

- Generalization of the Hug algorithm by Ludkin \& Sherlock (2019) originally used as an alternative to HMC to propose samples almost on the same contour of a density.
- Let $\ell(x)$ log-density of filamentary distribution around $f^{-1}(y)$ and \hat{g} denote normalized gradient at a contour of f.

Algorithm 1: Generalized Hug Kernel (one iteration)

1 Sample auxiliary velocity variable $v_{0} \sim \mathcal{N}(0, \mathrm{I})$.
2 for $b=0, \ldots, B-1$ do
$3 \quad$ Move: $x_{b+\delta / 2}=x_{b}+(\delta / 2) v_{b}$
4
Reflect: $v_{b+1}=v_{b}-2 \hat{g}_{b+\delta / 2} \hat{g}_{b+\delta / 2}^{\top} v_{b}$
Move: $x_{b+1}=x_{b+\delta / 2}+(\delta / 2) v_{b+1}$
6 end
7 With probability $a=\exp \left(\ell\left(x_{B}\right)-\ell\left(x_{0}\right)\right)$ accept x_{B}, else stay at x_{0}.

Intuition Behind Generalized Hug I

Dynamic of a particle in \mathbb{R}^{n} moving with constant speed on c-levelset of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with gradient g and Hessian H

$$
\begin{aligned}
\dot{x}_{t} & =v_{t} \\
\dot{v}_{t} & =-\frac{v_{t}^{\top} H_{t} v_{t}}{\left\|g_{t}\right\|} \hat{g}_{t} .
\end{aligned}
$$

A position-Verlet-like discretization starting from $\left(x_{0}, v_{0}\right)$ with $v_{0} \perp g_{0}$

$$
\begin{aligned}
& x_{t+\frac{\delta}{2}}=x_{t}+\frac{\delta}{2} v_{t} \\
& v_{t+\delta}=v_{t}-\delta \frac{v_{t}^{\top} H_{t+\frac{\delta}{2}} v_{t}}{\left\|g_{t+\frac{\delta}{2}}\right\|} \hat{g}_{t+\frac{\delta}{2}} \\
& x_{t+\delta}=x_{t+\frac{\delta}{2}}+\frac{\delta}{2} v_{t+\delta}
\end{aligned}
$$

Intuition Behind Generalized Hug II

Bounce mechanism is an approximation of curvature information

$$
\delta \frac{v_{t}^{\top} H_{t+\delta / 2} v_{t}}{\left\|g_{t+\delta / 2}\right\|}=2 v_{t}^{\top} \hat{g}_{t+\delta / 2}+\mathcal{O}\left(\delta^{2}\right)
$$

- Proposal mechanism can be thought of as approximate discretization.
- Continuous-time dynamic is a Constrained Hamiltonian system that has been solved for its Lagrange multipliers ${ }^{2}$.
- Performance can deteriorate for highly concentrated filamentary distributions.

[^1]
Visualization of Thug

Comments about Squeezing the Velocity

- Velocity squeezing for $\alpha \in[0,1)$ is a dumpened velocity projection

$$
w_{t}=\left(\mathrm{I}-\alpha \hat{g}_{t} \hat{g}_{t}^{\top}\right) v_{t}=: S_{\alpha, t} v_{t}
$$

- Velocity distribution now concentrated around tangent plane

$$
w_{t} \sim \mathcal{N}\left(0, S_{\alpha, t} S_{\alpha, t}^{\top}\right)
$$

has variance $(1-\alpha)^{2}$ along \hat{g}_{t} and variance 1 along any $\hat{t}_{t} \perp \hat{g}_{t}$.

- Final velocity needs to be unsqueezed for reversibility

$$
v_{t+\delta}=\left(\mathrm{I}+\frac{\alpha}{1-\alpha} \hat{g}_{t+\delta} \hat{g}_{t+\delta}^{\top}\right) w_{t+\delta}
$$

Now $\left\|v_{t}\right\| \neq\left\|v_{t+\delta}\right\|$ inducing a reduction in acceptance probability.

Thug Algorithm

Algorithm 2: Thug Kernel (one iteration)

1 Sample auxiliary velocity variable $v_{0} \sim \mathcal{N}(0, \mathrm{I})$.
2 Squeeze: $w_{0}=v_{0}-\alpha \hat{g}_{0} \hat{g}_{0}^{\top} v_{0}$.
з for $b=0, \ldots, B-1$ do
4 Move: $x_{b+\delta / 2}=x_{b}+(\delta / 2) w_{b}$
$5 \quad$ Reflect: $w_{b+1}=w_{b}-2 \hat{g}_{b+\delta / 2} \hat{g}_{b+\delta / 2}^{\top} w_{b}$
$6 \quad$ Move: $x_{b+1}=x_{b+\delta / 2}+(\delta / 2) w_{b+1}$
7 end
8 Unsqueeze: $v_{B}=w_{B}+(\alpha /(1-\alpha)) \hat{g}_{B} \hat{g}_{B}^{\top} w_{B}$.
9 With probability $a=\exp \left(\ell\left(x_{B}\right)-\ell\left(x_{0}\right)-\left\|v_{B}\right\|^{2} / 2+\left\|v_{0}\right\|^{2} / 2\right)$ accept x_{B}, otherwise stay at x_{0}.

The Trade-off of Squeezing the Velocity

- Optimal value of α unknown. The larger α, the closer we stay to the manifold, however the larger the reduction in acceptance probability due to the mismatch between $\left\|v_{0}\right\|$ and $\left\|v_{B}\right\|$.
- When target is highly concentrated experiments show AP increase due to higher precision outweights AP decrease due to mismatch.

Strategy

When targeting the BIP posterior

$$
p_{\sigma, \epsilon}(\theta, \eta \mid y) \propto p_{\sigma}(\theta, \eta) k_{\epsilon}\left(\left\|y-f_{\sigma}(\theta, \eta)\right\|\right)
$$

embed Thug in SMC sampler, start with $\alpha_{0}=0$ and increase it adaptively (Andrieu \& Thoms, 2008)

$$
\tau_{i+1}=\tau_{i}-\gamma_{i+1}\left(\hat{a}_{i}-a^{*}\right)
$$

where $\tau_{i}=\operatorname{logit}\left(\alpha_{i}\right), \hat{a}_{i}$ is the estimate of the acceptance probability from previous round, and a^{*} is target acceptance probability.

Experiments

Computational Time

Aim of Experiment

Determine if HUG/THUG bring noticeable computational savings with respect to C-HMC.

Algorithm	$f+\nabla f$	ESS	Cost per ESS
THUG	7002	74.68	$\mathbf{9 3 . 7 6}$
HUG	6001	54.87	109.37
CHMC	60442	39.24 (332.29)	1540.37 (181.90)
HMC	6462	3.03	2135.66

True Posterior Distribution

$$
\bar{p}(\theta, \eta \mid y) \propto p_{\sigma}(\theta, \eta)\left|\operatorname{det} J_{f}(\theta, \eta) J_{f}(\theta, \eta)^{\top}\right|^{-1 / 2}
$$

Approximate Posterior Distribution

$$
p_{\epsilon, \sigma}(\theta, \eta \mid y) \propto p_{\sigma}(\theta, \eta) k_{\epsilon}\left(\left\|f_{\sigma}(\theta, \eta)-y\right\|\right)
$$

Here k_{ϵ} is Gaussian, $y=1, \sigma=0.02, \delta=0.05, L=B=5$, and $\epsilon=0.001$.

Thug MCMC I

Aim of Experiment

Determine how acceptance probability deteriorates as step size δ decreases.

- Run Thug, Hug and HMC on lifted filamentary posterior

$$
p_{\sigma, \epsilon}(\theta, \eta \mid y) \propto p_{\sigma}(\theta, \eta) k_{\epsilon}\left(\left\|y-f_{\sigma}(\theta, \eta)\right\|\right)
$$

for $\epsilon=0.02$ and k_{ϵ} Epanechnikov, and C-HMC on lifted manifold posterior

$$
\bar{p}(\theta, \eta \mid y) \propto p_{\sigma}(\theta, \eta)\left|J_{f_{\sigma}}(\theta, \eta) J_{f_{\sigma}}(\theta, \eta)^{\top}\right|^{-1 / 2} .
$$

- Run across a grid of noise scale $\sigma \in\left(1 \times 10^{-5}, 1.0\right)$ and step-sizes $\delta \in\left(1 \times 10^{-5}, 1.0\right)$, keeping number of steps/bounces per iteration $B=L=20$ fixed.
- Average acceptance probability across 10 runs of 50 samples.

Thug MCMC II

Acceptance probability decoupled from noise level. Thug/Hug can use up to 2 orders of magnitude larger step-sizes than HMC.

SMC-Thug I

Aim of Experiment

Does SMC provide a good framework to adaptively tune Thug?

- Run RWM-SMC, HUG-SMC and adaptive THUG-SMC targeting $p_{\sigma, \epsilon}(\theta, \eta \mid y)$ for $\sigma=1 \times 10^{-8}$.
- Use $N=5000$ particles initialized from the prior and multinomial resampling at each step.
- Tune step-size based on estimated acceptance probability with minimum allowed stepsize of $\delta=1 \times 10^{-3}$.
- Adaptively choose next ϵ_{n} using number of unique particles.
- Stop SMC samplers either after $\epsilon \leq 1 \times 10^{-10}$, after 200 iterations or when acceptance probability drops to zero.

SMC-Thug II

HUG-SMC and THUG-SMC outperform RWM-SMC in terms of ESS and acceptance probability. Surprisingly, they manage to reach $\epsilon=1 \times 10^{-10}$ keeping $\delta=1 \times 10^{-3}$. Importantly when $p_{\sigma, \epsilon}$ is concentrated enough, THUG-SMC outperforms HUG-SMC.

Limitations and Future Directions

- How to compare samples from manifold and filamentary distributions?
- Does the ESS make sense on manifolds? Could derive a better metric.
- Develop approximate manifold sampling algorithms for $\operatorname{dim}(\mathcal{Y}) \gg 1$.
- Experiments with models where $\operatorname{dim}(\Theta)$ large.
- Apply these methods to other areas (ABC, SSM, motion control, etc).

Thank you

References i

References

Andrieu, C. and Thoms, J. A tutorial on adaptive mcmc. Statistics and Computing, 18(4):343-373, Dec 2008. ISSN 1573-1375. doi: 10.1007/s11222-008-9110-y. URL https://doi.org/10.1007/s11222-008-9110-y.

Au, K. X., Graham, M. M., and Thiery, A. H. Manifold lifting: scaling mcmc to the vanishing noise regime, 2021.

Federer, H. Geometric Measure Theory. Classics in Mathematics. Springer Berlin Heidelberg, 2014. ISBN 9783642620102. URL https://books.google.co.uk/books?id=jld-BgAAQBAJ.

References ii

Leimkuhler, B. and Reich, S. Simulating Hamiltonian Dynamics.
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2005. doi: 10.1017/CBO9780511614118.

Lelièvre, T., Rousset, M., and Stoltz, G. Hybrid monte carlo methods for sampling probability measures on submanifolds, 2019.

Ludkin, M. and Sherlock, C. Hug and hop: a discrete-time, non-reversible markov chain monte-carlo algorithm, 2019. URL https://arxiv.org/abs/1907.13570.

THUG MCMC III

Aim of Experiment

Does the acceptance probability of Hug/Thug deteriorate at slower rate than HMC/RM-HMC with respect to step size?

- Run Thug, Hug, RM-HMC and HMC to target filamentary posterior

$$
p_{\sigma}(\theta \mid y) \propto p(\theta) \mathcal{N}\left(h(\theta), \sigma^{2} \mathrm{I}\right)
$$

and C-HMC to target lifted manifold posterior

$$
\bar{p}(\theta, \eta \mid y) \propto p(\theta) p(\eta)\left|J_{f_{\sigma}}(\theta, \eta) J_{f_{\sigma}}(\theta, \eta)^{\top}\right|^{-1 / 2}
$$

- Run across a grid of noise scale $\sigma \in\left(1 \times 10^{-5}, 1.0\right)$ and step-sizes $\delta \in\left(1 \times 10^{-5}, 1.0\right)$, keeping number of steps/bounces per iteration $B=L=20$ fixed.
- Average acceptance probability across 10 runs of 50 samples.

Thug MCMC IV

HMC and RM-HMC need $\mathcal{O}(\delta)=\mathcal{O}(\sigma)$ for a good acceptance probability. Hug and Thug can achieve the same acceptance probability with 3 order of magnitude larger step-size.

Acceptance Probability vs Discretization Order

- Ludkin \& Sherlock (2019) showed that when $f=\ell, H$ is γ-Lipschitz and bounded above by $\beta>0$ Hug satisfies

$$
\left|\ell_{B}-\ell_{0}\right| \leq \frac{\delta^{2}}{8}\left\|v_{0}\right\|^{2}\left(2 \beta+\gamma T\left\|v_{0}\right\|\right)=: \mathcal{B}_{\mathrm{HUG}}
$$

Thug satisfies a tighter bound when $\alpha>0$ and $\hat{g}_{0}^{\top} v_{0} \neq 0$

$$
\left|\ell_{B}-\ell_{0}\right| \leq \mathcal{B}_{\mathrm{HUG}}-\frac{\alpha(2-\alpha) \delta^{2}\left(\hat{g}_{0}^{\top} v_{0}\right)^{2}}{8}\left(2 \beta+\gamma T\left\|v_{0}\right\|\right)=: \mathcal{B}_{\text {THUG }} .
$$

- When $f \neq \ell$ will require assumptions on relationship between f and ℓ

$$
p_{\epsilon}(x \mid y) \propto p(x) k_{\epsilon}(\|y-f(x)\|)
$$

GPV for Partitioned Systems

For a Partitioned ODE

$$
\begin{aligned}
\dot{x} & =F_{1}(x, v) \\
\dot{v} & =F_{2}(x, v)
\end{aligned}
$$

the Generalized Position Verlet (GPV) integrator

$$
\begin{aligned}
x_{n+1 / 2} & =x_{n}+\frac{\delta}{2} F_{1}\left(x_{n+1 / 2}, v_{n}\right) \\
v_{n+1} & =v_{n}+\frac{\delta}{2}\left[F_{2}\left(x_{n+1 / 2}, v_{n}\right)+F_{2}\left(x_{n+1 / 2}, v_{n+1}\right)\right] \\
x_{n+1} & =x_{n+1 / 2}+\frac{\delta}{2} F_{1}\left(x_{n+1 / 2}, v_{n+1}\right)
\end{aligned}
$$

is implicit, second-order, symmetric and symplectic.

GPV for Separable Systems

For a Separable ODE

$$
\begin{aligned}
\dot{x} & =F_{1}(v) \\
\dot{v} & =F_{2}(x)
\end{aligned}
$$

the GPV integrator

$$
\begin{aligned}
x_{n+1 / 2} & =x_{n}+\frac{\delta}{2} F_{1}\left(v_{n}\right) \\
v_{n+1} & =v_{n}+\delta F_{2}\left(x_{n+1 / 2}\right) \\
x_{n+1} & =x_{n+1 / 2}+\frac{\delta}{2} F_{1}\left(v_{n+1}\right)
\end{aligned}
$$

is explicit, second-order, symmetric and symplectic.

Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable system is implicit, it turns out that one can actually solve explicitly for v_{n+1} in the velocity update.

$$
\begin{aligned}
v_{n+1}= & \underbrace{v_{n}-\frac{\delta}{2} \frac{v_{n}^{\top} H_{F}\left(x_{n+1 / 2} v_{n}\right.}{\left\|\nabla_{x} F\left(x_{n+1 / 2}\right)\right\|} \widehat{\nabla_{x} F}\left(x_{n+1 / 2}\right)}_{:=a} \\
& \underbrace{\left.-\frac{\delta}{2} \frac{\nabla_{x} F}{\| \nabla_{x} F\left(x_{n+1 / 2}\right)} v_{n+1 / 2}\right) \|}_{=: b} v_{n+1}^{\top} H_{F}\left(x_{n+1 / 2}\right) v_{n+1}
\end{aligned}
$$

then the expression has the form (we write $H_{n+1 / 2}=H\left(x_{n+1 / 2}\right)$)

$$
v_{n+1}=a+b v_{n+1}^{\top} H_{n+1 / 2} v_{n+1} .
$$

This can be solved by solving a simple quadratic equation for ϑ

$$
c_{1} \vartheta^{2}+\left(2 c_{2}-1\right) \vartheta+c_{3}=0
$$

Alternative Integrator II

where

$$
\begin{aligned}
& c_{1}=b^{\top} H_{n+1 / 2} b \\
& c_{2}=a^{\top} H_{n+1 / 2} b \\
& c_{3}=a^{\top} H_{n+1 / 2} a .
\end{aligned}
$$

Interestingly, this discretization works well for sampling from filamentary distributions only when the initial velocity is perpendicular to the gradient at the initial position $v_{0} \perp \hat{g}_{0}$, otherwise it quickly blows up. This is in contrast with the generalised Hug algorithm which remains stable thanks to the BPS reflection mechanism.

A General Approximate Manifold Sampling Framework

Let π be a filamentary distribution whose limiting manifold distribution is $\bar{\pi}$. A general approximate manifold sampling algorithm consists of a triplet (H_{p}, Φ, H_{a}) where

- H_{p} is a Hamiltonian system that forms the base of our proposal mechanism. A good H_{p} would follow/stay close to \mathcal{M} and perhaps be a good Hamiltonian system for $\bar{\pi}$.
- Φ is a reversible (or skew-reversible) integrator for H_{p} of suitably high order and preferably with $\left|\operatorname{det} J_{\Phi}\right|=1$, symplecticity is desired but not needed.
- H_{a} is a Hamiltonian that determines which samples get accepted or rejected. This should include π for the algorithm to be correct.

Contours of Filamentary Distribution

Tangential Hug Stays closer

Manifold Distributions I

Transformation of Random Variable by Diffeomorphism

Let X be an \mathbb{R}^{n}-valued random vector with density p_{X}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a diffeomorphism and $Y=f(X)$. Then

$$
p_{Y}(y) d y=p_{X}\left(f^{-1}(y)\right)\left|\operatorname{det} J_{f^{-1}}(y)\right| d y
$$

The Co-Area formula for Lipschitz functions generalizes the above results to non-injective functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold

Let X be an \mathbb{R}^{n}-valued random vector with density p_{X}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth function with $n>m$, and let $y \in \mathbb{R}^{m}$. Then on the sub-manifold $f^{-1}(y)$

$$
\begin{equation*}
p(x \mid f(x)=y) \not \mathcal{H}^{n-m}(d x) \propto p_{X}(x)\left|\operatorname{det}\left(J_{f}(x) J_{f}(x)^{\top}\right)\right|^{-1 / 2} \neq \tag{n-m}
\end{equation*}
$$

Manifold Distributions II

Assumption 2

π admits a density with respect to the Hausdorff measure on \mathcal{M}.

Manifold Distribution

Let $X: \Omega \rightarrow \mathbb{R}^{n}$ be a vector-valued random variable with distribution π and finite covariance matrix $\mathbb{V}_{\pi}[X]$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Consider $y \in \mathbb{R}$ fixed, then at any point $\xi \in f^{-1}(y)$ we denote by $\hat{g}(\xi)$ the normalized gradient of f and by $T(\xi)=\left\{\hat{t}_{1}(\xi), \ldots, \hat{t}_{n-1}(\xi)\right\}$
a basis for the tangent space at ξ. Then π is a manifold distribution if $\forall \xi \in \mathbb{R}^{n}$ and $\forall \hat{t}_{i}(\xi) \in \mathbf{T}(\xi)$

$$
\hat{g}(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{g}(\xi)=0 \quad \text { and } \quad \hat{t}_{i}(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{t}_{i}(\xi)>0
$$

Typically obtained as limiting posterior density as some scale parameter goes to zero.

Manifold Distribution III

Manifold Distribution

Let U be an \mathbb{R}^{n}-valued random variable, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be smooth.
Let $\mathrm{K}(y, d u)$ be a regular conditional distribution of U given $\sigma(f(U))$ and let \mathcal{H}_{y}^{n-m} be the Hausdorff measure on $f^{-1}(y)$. If $\mathrm{K}(y, \cdot) \ll \mathcal{H}_{y}^{n-m}$ then $\pi=\mathrm{K}(y, \cdot)$ is a manifold distribution.

Manifold Distribution IV

Graham's Theorem Revisited

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $U: \Omega \rightarrow \mathbb{R}^{n}$ be a random vector with distribution P_{U} and density p_{U} with respect to λ^{n}, the Lebesgue measure on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. Let $n>\mathrm{m}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth function with Jacobian matrix $J_{f}(u)$ having full row-rank λ^{n}-almost everywhere, and let $f \circ U$ have distribution $P_{f}=P_{U} \circ f^{-1}$. Let $\sigma(f)$ be the sigma-algebra generated by $f \circ U$, and let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a $\mathcal{B}\left(\mathbb{R}^{n}\right)$-measurable test function. Let $\mathrm{K}(y, d u)$ be a RCD of U given $\sigma(f)$ from $\left(\mathbb{R}^{m}, \sigma(f)\right)$ to $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right.$), such that $\mathrm{K}(y, \cdot) \ll \mathcal{H}^{n-m}$. Then expectations with respect to K can be written as

$$
\mathbb{E}[\phi(U) \mid f(U)=y]=\int_{f^{-1}(\{y\})} \phi(u) k_{y}(u) \mathcal{H}^{n-m}(d u)
$$

where $k_{y}(u)$ is the density of $\mathrm{K}(y, \cdot)$ on $f^{-1}(\{y\})$ with respect to \mathcal{H}^{n-m}, given by

$$
k_{y}(u) \propto p_{U}(u)\left|\operatorname{det} J_{f}(u) J_{f}(u)^{\top}\right|^{-1 / 2}
$$

When is $f^{-1}(y)$ a submanifold?

Let \mathcal{X} and \mathcal{Y} be manifolds and $f: \mathcal{X} \rightarrow \mathcal{Y}$ be smooth.

Regular Value

Then $y \in \mathcal{Y}$ is a regular value for f if for all $x \in f^{-1}(y)$ the differential $d f_{x}: \mathcal{T}_{x} \mathcal{X} \rightarrow \mathcal{T}_{y} \mathcal{Y}$ is surjective. (alternatively, f is a submersion at every $\left.x \in f^{-1}(y)\right)$.

Preimage Theorem

If $y \in \mathcal{Y}$ is a regular value of f then $f^{-1}(y)$ is a submanifold of \mathcal{X}.

Filamentary Distributions

Assumption 1

Manifold of interest has co-dimension 1.

Filamentary Distribution

Let $X: \Omega \rightarrow \mathbb{R}^{n}$ be a vector-valued random variable with distribution π and finite covariance matrix $\mathbb{V}_{\pi}[X]$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Consider $y \in \mathbb{R}$ fixed, then at any point $\xi \in f^{-1}(y)$ we denote by $\hat{g}(\xi)$ the normalized gradient of f and by $\mathbf{T}(\xi)=\left\{\hat{t}_{1}(\xi), \ldots, \hat{t}_{n-1}(\xi)\right\}$ a basis for the tangent space at ξ. We say that π is a filamentary distribution if

$$
\forall \xi \in \mathbb{R}^{n}, \quad \forall \hat{t}_{i}(\xi) \in \mathrm{T}(\xi) \quad 0<\hat{g}(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{g}(\xi) \ll \hat{t}_{i}(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{t_{i}}(\xi)
$$

In practice one doesn't need to check the definition, it will be clear if the posterior has a filamentary structure.

- Filamentary distributions are highly concentrated around a submanifold.
- Orthogonal scaling \ll tangential scaling.

[^0]: ${ }^{1}$ Example taken from Au et al. (2021) and corresponding Jupyter Notebooks.

[^1]: ${ }^{2}$ Shout-out to Sam Livingstone for noticing this. See also Leimkuhler \& Reich (2005).

