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A General Set-Up



A General Set-Up

The following setup appears in many areas of statistics.

e p(z) prior on X.
« f: X — Rsmoothso f~1(y) is a submanifold of X' for each y € R.

Interest often lies in sampling from the following distributions.
+ Manifold Densities: Restricted prior onto f~!(y)
Bz | f(z) =y) o< pl(o)|Jp(x)Jp(z) 7|72
+ Filamentary Densities: Concentrated prior around f~1(y)
pe(@ | y) o p(r)ke(lly — f()]])
Typically filamentary densities are a relaxation of manifold densities

pe(z | y) — plx | f(x) =1y) as e —0.



Bayesian Inverse Problems (BIP)



BIP - Set up I

Observed data y € R is the output of forward function h : © — R of
parameters § € O perturbed by Gaussian observational noise € R

y=fo(0,n)=hO)+0on n~N(OI) >0
The forward function h encapsulates all the complexity of the model.

« forward problem (easy): Simulate y given 6.

« inverse problem (hard): Infer 6 given y via BIP posterior p, (6 | y).
Inverse problems are under-determined due to

» h=1(y) C © being a set when h is not injective.

* 7 introducing additional non-identifiability (small o reduces it).



BIP - Set up II

Manifolds in BIP
When A is smooth then

 h~!(y) is a sub-manifold of ©.
* f-1(y) is a sub-manifold of © x R for any o > 0.

BIP Posteriors
* Po(8 | y) x p(O)Po (y | 6) around A= (y).
* Poc(0,n|y) o< po (8, Mke(lly — fo(8,m)|) around £ (y)

Here k. is a smoothing kernel.



BIP - Toy Example I

* Observed data: y = 1.0
* Parameter: 0 = (6p,0,)" € R?
« Forward Function': h(0) = 07 + 30%(02 — 1)

@) 7 N, |
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+ Manifold h~!(y) independent of o.

+ Manifold f;!(y) changes shape for different o.
1Example taken from Au et al. (2021) and corresponding Jupyter Notebooks.




BIP - Toy Example II

Sampling from the posterior p, (6 | y) using HMC becomes harder as o
decreases.

c=0.5 c=0.1 c=0.02

W ; /} e \ T~
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0
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Exact Manifold Sampling



Constrained HMC I (Leliévre et al., 2019)

To target w(dx) = p(z)H (dx) construct a constrained Hamiltonian system
&= V,H(x,v)
0 =—V,H(z,v)
f(z) =0.

where H(z,v) = —logp(x) + ||v||?/2 and M = 1. This can be integrated
with RATTLE/SHAKE which are constrained versions of the Leapfrog.
Distinguishing features from Leapfrog are:

* Projections to enforce 2z € M.

 Reversibility checks (and reprojection).



Constrained HMC 1II (Lelievre et al., 2019)

+ Position Projections are non-linear and require a solver. Au et al. (2021)
shows Newton/symmetric-Newton solvers works well in practice.




Constrained HMC III (Leliévre et al., 2019)

At each C-HMC integration step the following operations are expensive:

Position projections can potentially lead to many Jacobian evaluations. Next
we see an approximate manifold sampling method to sample from
Do,e(0,1 | y) and avoid these expensive operations.



Approximate Manifold Sampling
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Generalized Hug

* Generalization of the Hug algorithm by Ludkin & Sherlock (2019)
originally used as an alternative to HMC to propose samples almost on
the same contour of a density.

+ Let /(x) log-density of filamentary distribution around f~*(y) and g
denote normalized gradient at a contour of f.

Algorithm 1: Generalized Hug Kernel (one iteration)

1 Sample auxiliary velocity variable vy ~ N(0,T).
2 forb=0,...,B—1do
3 Move: Thys5/2 = Lb ate (5/2)1%

4 Reflect: Vp41 = Up — 2§b+5/2g;r5/21)b
5 | Move: zy1 = Typ5/2 + (6/2)vp41
6 end

7 With probability a = exp(¢(zp) — ¢(x0)) accept = p, else stay at x.

11



Intuition Behind Generalized Hug I

Dynamic of a particle in R™ moving with constant speed on c-levelset of
f: R™ — R with gradient ¢ and Hessian H

§
xtJr% =X + §vt
vtTHH_avt
Vt45 = Ut — ||gt+é H 9t+a

Tits = Ly + §Ut+6

12



Intuition Behind Generalized Hug I1

Bounce mechanism is an approximation of curvature information

-
v, H v
Ut Htre/20 ijgt+5/2 + 0(8?)
||gt+6/2H

* Proposal mechanism can be thought of as approximate discretization.

 Continuous-time dynamic is a Constrained Hamiltonian system that has
been solved for its Lagrange multipliers?.

* Performance can deteriorate for highly concentrated filamentary
distributions.

2Shout-out to Sam Livingstone for noticing this. See also Leimkuhler & Reich (2005).
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Visualization of Thug
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Visualization of Thug
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Comments about Squeezing the Velocity

* Velocity squeezing for « € [0, 1) is a dumpened velocity projection
_ o AT .
Wy = (I — CgtGy )Ut =: Sa,tVt
* Velocity distribution now concentrated around tangent plane
we ~ N(O, Sa,tS(;t)

has variance (1 — «)? along §; and variance 1 along any #; L §,.

+ Final velocity needs to be unsqueezed for reversibility

Vits = (I + 9t+ogt+o> W45

Now ||v¢|| # ||v¢+s]|| inducing a reduction in acceptance probability.
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Thug Algorithm

Algorithm 2: Thug Kernel (one iteration)

1 Sample auxiliary velocity variable vy ~ A(0, I).

2 Squeeze: wy = vy — adodqa Vo-

3 forb=0,...,B—1do

4 Move: 2,5/ = p + (6/2)wy

5 Reflect: Whe1 = Wp — 2gb+5/2ng+5/2wb

6 Move: zy41 = Tpys/2 + (0/2)wp i1

7 end

8 Unsqueeze: v = wp + (a/(1 — a))dpdLws.

9 With probability a = exp(¢(zg) — £(x¢)—||vs||*/2 + |lvol|?/2) accept
x g, otherwise stay at x.
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The Trade-off of Squeezing the Velocity

+ Optimal value of & unknown. The larger «, the closer we stay to the
manifold, however the larger the reduction in acceptance probability
due to the mismatch between ||vg]| and ||vz]|.

» When target is highly concentrated experiments show AP increase due
to higher precision outweights AP decrease due to mismatch.

Strategy
When targeting the BIP posterior

pa7e(9777| y)O( ke(‘ly_fo(evn)n)a

embed Thug in SMC sampler, start with oy = 0 and increase it adaptively
(Andrieu & Thoms, 2008)

Ti+1 = T — Yi+1(8; — a¥),
where 7; = logit(«;), @, is the estimate of the acceptance probability from

previous round, and a* is target acceptance probability.
17



Experiments




Computational Time

Aim of Experiment
Determine if HUG/THUG bring noticeable computational savings with
respect to C-HMC.

Algorithm | f+Vf | ESS Cost per ESS
THUG 7002 74.68 93.76

HUG 6001 54.87 109.37

CHMC 60442 39.24 (332.29) | 1540.37 (181.90)
HMC 6462 3.03 2135.66

True Posterior Distribution

p(0,7 | y) o | det J;(0,1) T (0,m) 7|71/
Approximate Posterior Distribution
pe,a(97fl|y)0< ke(”fo(gvn)_yn)'

Here k. is Gaussian, y = 1, 0 = 0.02, § = 0.05, L = B =5, and ¢ = 0.001.
18



Thug MCMC I

Aim of Experiment

Determine how acceptance probability deteriorates as step size d decreases.

* Run Thug, Hug and HMC on lifted filamentary posterior

Po,e(0,m | y) x ke(lly — fo(0,m)I])

for e = 0.02 and k. Epanechnikov, and C-HMC on lifted manifold
posterior

50,1 | y) Ty, (0,m) s, (0,m) | ~*/2.

« Run across a grid of noise scale o € (1 x 10~°,1.0) and step-sizes

§ € (1 x 107, 1.0), keeping number of steps/bounces per iteration
B = L = 20 fixed.

* Average acceptance probability across 10 runs of 50 samples.
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Thug MCMC II

Acceptance probability decoupled from noise level. Thug/Hug can use up to
2 orders of magnitude larger step-sizes than HMC.

C-HMC THUG-AL 1o
10° )
10!
1072 0.8
w
1073
10
105 0.6
HUG-AL HMC-AL
10°
0.4
10-!
1072
w0
103 0.2
10
10-5
T T T T T T T T T T T T 0.0
10-5 107 1077102 107! 10°  1075107* 10~% 1072 10-! 10° 20

a a



SMC-Thug I

Aim of Experiment

Does SMC provide a good framework to adaptively tune Thug?

* Run RWM-SMC, HUG-SMC and adaptive THUG-SMC targeting
Po.c(0,m | y) foro =1 x 1078,

* Use N = 5000 particles initialized from the prior and multinomial
resampling at each step.

* Tune step-size based on estimated acceptance probability with
minimum allowed stepsize of § = 1 x 1073.

Adaptively choose next €,, using number of unique particles.

+ Stop SMC samplers either after ¢ < 1 x 10710, after 200 iterations or
when acceptance probability drops to zero.

21



SMC-Thug I

HUG-SMC and THUG-SMC outperform RWM-SMC in terms of ESS and
acceptance probability. Surprisingly, they manage to reach ¢ = 1 x 10710
keeping 6 = 1 x 1073, Importantly when p,, . is concentrated enough,
THUG-SMC outperforms HUG-SMC.

Unique Particles Step Sizes €SS Acceptance Probability

22



Limitations and Future Directions

* How to compare samples from manifold and filamentary distributions?
* Does the ESS make sense on manifolds? Could derive a better metric.
+ Develop approximate manifold sampling algorithms for dim()’) > 1.
+ Experiments with models where dim(©) large.

» Apply these methods to other areas (ABC, SSM, motion control, etc).

23



Thank you
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THUG MCMC II1

Aim of Experiment
Does the acceptance probability of Hug/Thug deteriorate at slower rate
than HMC/RM-HMC with respect to step size?

* Run Thug, Hug, RM-HMC and HMC to target filamentary posterior
Pa (0 1Y) o p(OIN (R(6), o°T).
and C-HMC to target lifted manifold posterior
(0,0 | y) o< p(@)p(m)| Tz, (0,m)Tr, (0,m) |71/

* Run across a grid of noise scale o € (1 x 1075, 1.0) and step-sizes
d € (1 x 1075, 1.0), keeping number of steps/bounces per iteration
B = L = 20 fixed.

 Average acceptance probability across 10 runs of 50 samples.
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Thug MCMC IV

HMC and RM-HMC need O(§) = O(o) for a good acceptance probability.
Hug and Thug can achieve the same acceptance probability with 3 order of
magnitude larger step-size.
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©
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Acceptance Probability vs Discretization Order

 Ludkin & Sherlock (2019) showed that when f = ¢, H is y-Lipschitz
and bounded above by 8 > 0 Hug satisfies

62
[tp — fo| < §||UO||2(2/5’ + YT ||voll) =: Buuc

Thug satisfies a tighter bound when o > 0 and g vo # 0

(2 — a)8%(gg vo)?
8

[ — 4o| < Buuc — (28 +T||lvol]) =: Brauc-

* When f # ¢ will require assumptions on relationship between f and ¢

pe(z | y) o p(@)ke(lly — f()])
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GPV for Partitioned Systems

For a Partitioned ODE

T = Fi(z,v)
v = Fy(x,v)

the Generalized Position Verlet (GPV) integrator
)
Tp41/2 = Tn + §F1(9Cn+1/2771n)
0
Un41 = Up + 3 [F2(90n+1/27vn) + F2(9Cn+1/27vn+1)]

1)
T4l = Tpg1/2 + §F1($n+1/27 Unt1)

is implicit, second-order, symmetric and symplectic.
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GPV for Separable Systems

For a Separable ODE

the GPV integrator

1)
Tpy1/2 = Tn + §F1(Un)
Unt1 = Un + 0F5(Znt1/2)
Tn+1 = Tpt1/2 + §F1(’Un+1)

is explicit, second-order, symmetric and symplectic.
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Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable
system is implicit, it turns out that one can actually solve explicitly for v,, 41
in the velocity update.

0 (U;LFHF (ITL-‘rl/QlUn ==
———— """V, F(x

2 VP @yl o )

=a

) ﬁ(u’ﬁnﬂm) T
Y Uy, HF(ITL 1 2)”n+17
2 [VaF (@)l " o

Un4+1 = Un

=:b

then the expression has the form (we write H,, 1/ = H(2y,41/2))
Un41 = G+ bUZHHn+1/2Un+1-
This can be solved by solving a simple quadratic equation for v

01192 —+ (2()2 - 1)’(9 + C3 = 0
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Alternative Integrator 11

where

c1 =b" Hyyq/9b
Co = aTHn+1/2b

T
c3=a Hyiqa.

Interestingly, this discretization works well for sampling from filamentary
distributions only when the initial velocity is perpendicular to the gradient at
the initial position vy L gg, otherwise it quickly blows up. This is in contrast
with the generalised Hug algorithm which remains stable thanks to the BPS
reflection mechanism.
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A General Approximate Manifold Sampling Framework

Let 7 be a filamentary distribution whose limiting manifold distribution is 7.
A general approximate manifold sampling algorithm consists of a triplet
(Hp, ®, H,) where

* H, is a Hamiltonian system that forms the base of our proposal
mechanism. A good H,, would follow/stay close to M and perhaps be a
good Hamiltonian system for 7.

* @ is areversible (or skew-reversible) integrator for /7,, of suitably high
order and preferably with | det .Jg| = 1, symplecticity is desired but not
needed.

* H, is a Hamiltonian that determines which samples get accepted or
rejected. This should include 7 for the algorithm to be correct.
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Contours of Filamentary Distribution
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Tangential Hug Stays closer

o Hug o Tangential Hug
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Manifold Distributions I

Transformation of Random Variable by Diffeomorphism
Let X be an R"-valued random vector with density px. Let f : R — R"
be a diffeomorphism and Y = f(X). Then

py (W) v =px(f7'(y)) det Jp-1 (y)|

The for Lipschitz functions generalizes the above results to
functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold

Let X be an R"-valued random vector with density px. Let f : R” — R™
be a smooth function with n > m, and let y € R™. Then on the
sub-manifold f~(y)

p(z | f(z) =y) o px ()] det(Jy (2) Iy () )| 72
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Manifold Distributions IT

7 admits a density with respect to the Hausdorff measure on M.

Manifold Distribution

Then 7 is a manifold distribution if
V¢ € R™ and V#;(€) € T(€)

96 Va[X]g€) =0  and (&) Va[X]E:(€) > 0.
Typically obtained as limiting posterior density as some scale parameter
goes to zero.
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Manifold Distribution III

Manifold Distribution

Let U be an R™-valued random variable, and f : R™ — R be smooth.
Let K(y, du) be a regular conditional distribution of U given o(f(U)) and
let 1/~ be the Hausdorff measure on f~'(y). If K(y,-) < Hj =" then
m = K(y, -) is a manifold distribution.
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Manifold Distribution IV

Graham’s Theorem Revisited

Let (2, 7, P) be a probability space, U : €2 — R" be a random vector with
distribution P;; and density p;; with respect to A", the Lebesgue measure
on (R™, B(R™)). Letn >m and f : R™ — R be a smooth function with
Jacobian matrix J¢(u) having full row-rank A”-almost everywhere, and let
f o U have distribution Py = Py o f~'. Let o(f) be the sigma-algebra
generated by f o U, and let ¢ : R™ — R be a B(IR™)-measurable test
function. Let K(y, du) be a RCD of U given o(f) from (R™,o(f)) to
(R™, B(R™)), such that K(y, -) < H™ ™. Then expectations with respect
to K can be written as

Big(U) | S0) == [ otk (" )

where £, (u) is the density of K(y, -) on f~*({y}) with respect to H" ™,
given by
~1/2
by () oc pu (u) |det 7 (w); (w)T| 2.
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When is /~!(y) a submanifold?

Let A and ) be manifolds and f : X — )’ be smooth.

Regular Value

Then y € ) is a regular value for f if for all # € f~1(y) the differential
dfy : To X — T,) is surjective. (alternatively, f is a submersion at every

z e f~'(y).

Preimage Theorem

If y € YV is a regular value of f then f~!(y) is a submanifold of X.
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Filamentary Distributions

Manifold of interest has co-dimension 1.

Filamentary Distribution

Let X : 2 — R" be a vector-valued random variable with distribution 7
and finite covariance matrix V[X], and let f : R™ — R be a smooth
function. Consider y € R fixed, then at any point ¢ € f~!(y) we denote
by §(€) the normalized gradient of f and by T(¢) = {£1(¢),...,tn_1(&)}
a basis for the tangent space at £&. We say that 7 is a filamentary
distribution if

VEER™, V(£ eTE)  0<g&)TVaX]g(8) < (&) TVAIX]E:(E).

In practice one doesn’t need to check the definition, it will be clear if the
posterior has a filamentary structure.

+ Filamentary distributions are around a submanifold.
 Orthogonal scaling < tangential scaling. 0
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