

Approximate Manifold Sampling

Mauro Camara Escudero, Christophe Andrieu, Mark Beaumont

University of Bristol

Motivation

Overview

- Probability distributions on lower-dimensional submanifolds:
 - Bayesian inverse problems (Au et al., 2021)
 - Approximate Bayesian Computation (Graham & Storkey, 2017)
 - Molecular Dynamics (Lelièvre et al., 2010)
 - Topological Statistics (Diaconis et al., 2012)
 - Diffusion models (Graham et al., 2019)

Overview

- Probability distributions on lower-dimensional submanifolds:
 - Bayesian inverse problems (Au et al., 2021)
 - Approximate Bayesian Computation (Graham & Storkey, 2017)
 - Molecular Dynamics (Lelièvre et al., 2010)
 - Topological Statistics (Diaconis et al., 2012)
 - Diffusion models (Graham et al., 2019)
- Constrained samplers such as C-HMC and C-RWM (Lelièvre et al., 2019; Zappa et al., 2018) are very expensive: require 2 calls to optimization routines per sample.

Overview

- Probability distributions on lower-dimensional submanifolds:
 - Bayesian inverse problems (Au et al., 2021)
 - Approximate Bayesian Computation (Graham & Storkey, 2017)
 - Molecular Dynamics (Lelièvre et al., 2010)
 - Topological Statistics (Diaconis et al., 2012)
 - Diffusion models (Graham et al., 2019)
- Constrained samplers such as C-HMC and C-RWM (Lelièvre et al., 2019; Zappa et al., 2018) are very expensive: require 2 calls to optimization routines per sample.
- Contribution: avoid costly operations by developing an efficient sampler (THUG) for a relaxation of the problem.

Application: Bayesian Inverse Problems

• Observational model with data-generating mechanism

$$y = F(\theta) + v$$
 $v \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ F smooth.

• Observe y^* and perform inference on

$$p_{\sigma}(\theta \mid y^*) \propto p(\theta) \mathcal{N}(F(\theta) \mid y^*, \sigma^2 \mathbf{I})$$

• For $\sigma > 0$ small the posterior is concentrated around

$$\mathcal{M} = \left\{ \theta \in \Theta : F(\theta) = y^* \right\}.$$

• For $\sigma \to 0$ the posterior $p_{\sigma}(\theta \mid y^*)$ is supported on \mathcal{M} .

- Let $F(\theta_0, \theta_1) = \theta_1^2 + 3\theta_0^2(\theta_0^2 1)$ and observe $y^* = 1$.
- Posterior for 3 values of noise scale. Samples via HMC.

¹Au et al. (2021)

Tools and Background

Assumptions

• *n* > *m*.

Assumptions

- n > m.
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.

Assumptions

- n > m
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ smooth

Assumptions

- n > m.
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ smooth

Facts and Notation

• $f^{-1}(y)$ manifold for almost every $y \in \mathbb{R}^m$.

Assumptions

- n > m.
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ smooth

- $f^{-1}(y)$ manifold for almost every $y \in \mathbb{R}^m$.
- At each $x \in f^{-1}(y)$ tangent \mathcal{T}_x and normal \mathcal{N}_x spaces are defined.

Assumptions

- n > m.
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ smooth

- $f^{-1}(y)$ manifold for almost every $y \in \mathbb{R}^m$.
- At each $x \in f^{-1}(y)$ tangent \mathcal{T}_x and normal \mathcal{N}_x spaces are defined.
- J full row-rank and $\mathcal{J}_m f := |\det J(x)J(x)^\top|^{1/2} > 0$ a.e.

Assumptions

- n > m.
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ smooth

- $f^{-1}(y)$ manifold for almost every $y\in \mathbb{R}^m.$
- At each $x \in f^{-1}(y)$ tangent \mathcal{T}_x and normal \mathcal{N}_x spaces are defined.
- J full row-rank and $\mathcal{J}_m f := |\det J(x)J(x)^\top|^{1/2} > 0$ a.e.
- T_x and N_x projection matrices well-defined a.e.

Assumptions

- n > m.
- $\pi(x)$ prior density on \mathbb{R}^n wrt Lebesgue measure.
- $f: \mathbb{R}^n \to \mathbb{R}^m$ smooth

- $f^{-1}(y)$ manifold for almost every $y\in \mathbb{R}^m$.
- At each $x \in f^{-1}(y)$ tangent \mathcal{T}_x and normal \mathcal{N}_x spaces are defined.
- J full row-rank and $\mathcal{J}_m f := |\det J(x)J(x)^\top|^{1/2} > 0$ a.e.
- T_x and N_x projection matrices well-defined a.e.
- $\mathcal{H}^{n-m}(dx)$ Hausdorff measure on $f^{-1}(y)$.

Observe $y^* \in \mathbb{R}^m$.

• Exact Manifold Sampling:

Observe $y^* \in \mathbb{R}^m$.

- Exact Manifold Sampling:
 - Posterior: $\pi(x)$ restricted on $f^{-1}(y^*)$ (Manifold Distribution)

$$\eta(x) = \pi(x)\mathcal{J}_m f^{-1}(x)$$

Observe $y^* \in \mathbb{R}^m$.

- Exact Manifold Sampling:
 - Posterior: $\pi(x)$ restricted on $f^{-1}(y^*)$ (Manifold Distribution)

$$\eta(x) = \pi(x)\mathcal{J}_m f^{-1}(x)$$

Approximate Manifold Sampling

Observe $y^* \in \mathbb{R}^m$.

- Exact Manifold Sampling:
 - Posterior: $\pi(x)$ restricted on $f^{-1}(y^*)$ (Manifold Distribution)

$$\eta(x) = \pi(x)\mathcal{J}_m f^{-1}(x)$$

- Approximate Manifold Sampling
 - Posterior: $\pi(x)$ concentrated around $f^{-1}(y^*)$ (Filamentary Distribution)

$$\eta_{\epsilon}(x) = \pi(x)k_{\epsilon}(\|y^* - f(x)\|)$$

where k_{ϵ} is a kernel (approximation to the identity).

Observe $y^* \in \mathbb{R}^m$.

- Exact Manifold Sampling:
 - Posterior: $\pi(x)$ restricted on $f^{-1}(y^*)$ (Manifold Distribution)

$$\eta(x) = \pi(x)\mathcal{J}_m f^{-1}(x)$$

- Approximate Manifold Sampling
 - Posterior: $\pi(x)$ concentrated around $f^{-1}(y^*)$ (Filamentary Distribution)

$$\eta_{\epsilon}(x) = \pi(x)k_{\epsilon}(\|y^* - f(x)\|)$$

where k_{ϵ} is a kernel (approximation to the identity).

When is this relaxation sensible? $\mathbb{E}_{\eta_{\epsilon}}[\psi] \to \mathbb{E}_{\eta}[\psi] \text{ as } \epsilon \to 0^+$

Definition (Approximation to the identity (ATI))

A sequence $\{k_{\epsilon} : \mathbb{R}^m \to \mathbb{R}\}_{\epsilon>0}$ of integrable functions is an approximation to the identity if there exists a constant A such that

$$\int_{\mathbb{R}^m} k_{\epsilon}(y) dy = 1 \qquad \qquad \forall \epsilon > 0$$
$$|k_{\epsilon}(y)| \leq \frac{A}{\epsilon^m} \qquad \qquad \forall \epsilon > 0, \ \forall y \in \mathbb{R}^m$$
$$|k_{\epsilon}(y)| \leq \frac{A\epsilon}{\|y\|^{m+1}} \qquad \qquad \forall \epsilon > 0, \ \forall y \in \mathbb{R}^m \setminus \{0\}$$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ Lipschitz, with J full row-rank almost everywhere. Let $\psi : \mathbb{R}^n \to \mathbb{R}$ be π -integrable, and $\{k_{\epsilon}\}_{\epsilon>0}$ be an ATI. Then for almost every $y^* \in \mathbb{R}^m$

$$\lim_{\epsilon \to 0^+} \int_{\mathbb{R}^n} \psi(x) \eta_{\epsilon}(x) dx = \int_{f^{-1}(y^*)} \psi(x) \eta(x) \mathcal{H}^{n-m}(dx)$$

Alternative Theorems

Weaker conditions on ψ are possible (see paper).

Exact Manifold Sampling

Constrained Random Walk Metropolis (C-RWM)

- *Proposal Step* Given $x \in \mathcal{M}$, sample a Gaussian perturbation on the tangent space² $v \in \mathcal{T}_x$ and move to y = x + v. Typically $y \notin \mathcal{M}$ so a non-linear projection is required: find $\lambda \in \mathbb{R}^m$ such that $x' = y + J_x^T \lambda$ lies on \mathcal{M} via e.g. Newton method (Au et al., 2021).
- *Reversibility Check* Multiple such λ might exist, but not all might satisfy detailed balance. Need to check that running the algorithm backwards from x' one would get to x with tolerance $\rho > 0$.
- Acceptance Step Metropolis-Hastings

$$a(x, x') = \min\left\{1, \frac{\eta(x')\mathcal{N}(v' \mid 0, \mathbf{I})}{\eta(x)\mathcal{N}(v \mid 0, \mathbf{I})}\right\}.$$

²Sample $\nu \sim \mathcal{N}(0, \mathbf{I}_n)$ and project $v = \mathbf{T}_x \nu$.

Illustration of C-RWM

9

Approximate Manifold Sampling

Imagine a billiard ball hitting the cushion of a pool table. A bounce is the composition of three operations: straight line movement, a reflection of the direction of motion, and another straight line movement in this new direction.

Bounce

For any orthogonal matrix R, and step size $\delta > 0$ the bounce

$$\mathbb{B}_{\mathrm{R},\delta}(x,v) = \left(x + \frac{\delta}{2}v + \frac{\delta}{2}\mathrm{R}v, \mathrm{R}v\right)$$

is time-reversible and volume-preserving, i.e.

- $\phi \circ \mathbb{B}_{\mathbf{R},\delta}(x,v)$ is an involution (here $\phi(x,v) = \phi(x,-v)$).
- has unit absolute determinant Jacobian $|\det(J_{\mathbb{B}_{R,\delta}})| = 1$.

• Tangential Hug (THUG) uses a particular reflection matrix

$$\mathbf{R} = \mathbf{I}_n - 2\mathbf{N}_{x+(\delta/2)v}.$$

• Tangential Hug (THUG) uses a particular reflection matrix

$$\mathbf{R} = \mathbf{I}_n - 2\mathbf{N}_{x+(\delta/2)v}.$$

• Velocity reflection off $\mathcal{T}_{x+(\delta/2)v}$, the tangent space at the bounce point.

• Tangential Hug (THUG) uses a particular reflection matrix

$$\mathbf{R} = \mathbf{I}_n - 2\mathbf{N}_{x+(\delta/2)v}.$$

- Velocity reflection off $\mathcal{T}_{x+(\delta/2)v}$, the tangent space at the bounce point.
- Intuition: Moving along N_x would lead to largest change in f, so by going in the opposite direction we are trying to minimize this change.

• Tangential Hug (THUG) uses a particular reflection matrix

$$\mathbf{R} = \mathbf{I}_n - 2\mathbf{N}_{x+(\delta/2)v}$$

- Velocity reflection off $\mathcal{T}_{x+(\delta/2)v}$, the tangent space at the bounce point.
- Intuition: Moving along N_x would lead to largest change in f, so by going in the opposite direction we are trying to minimize this change.

THUG Bounce Precision (inspired by Ludkin & Sherlock (2019)) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be smooth, and let J_x and H[x] be its Jacobian matrix

and Hessian tensor respectively. If H is bounded by $\beta \in (0, \infty)$ and γ -Lipschitz, then applying the THUG bounce $B \in \mathbb{Z}_+$ times starting from $x_0, v_0 \in \mathbb{R}^n$ gives

$$\|f(x_B) - f(x_0)\| \le \frac{\delta^2 \|v_0\|^2}{8} \left(2\beta + \gamma \|Tv_0\|\right) =: \mathcal{B}_0$$

where $T = B\delta$ is the total integration time.

• THUG bounce is an explicit second-order integrator for the dynamics of a particle with constant speed and centripetal acceleration on *M*

$$\begin{split} \dot{\boldsymbol{x}} &= \boldsymbol{v} \\ \dot{\boldsymbol{v}} &= -\mathbf{J}_{\boldsymbol{x}}^{\top} (\mathbf{J}_{\boldsymbol{x}} \mathbf{J}_{\boldsymbol{x}}^{\top})^{-1} \mathbf{H}[\boldsymbol{x}](\boldsymbol{v},\boldsymbol{v}) \end{split}$$

• THUG bounce is an explicit second-order integrator for the dynamics of a particle with constant speed and centripetal acceleration on *M*

$$\dot{x} = v$$

$$\dot{v} = -\mathbf{J}_x^{\top} (\mathbf{J}_x \mathbf{J}_x^{\top})^{-1} \mathbf{H}[x](v, v)$$

• Although dynamic requires velocity to be on tangent space at all times, all properties above are still satisfied even if that's not the case.

• THUG bounce is an explicit second-order integrator for the dynamics of a particle with constant speed and centripetal acceleration on *M*

$$\dot{x} = v$$

$$\dot{v} = -\mathbf{J}_x^{\top} (\mathbf{J}_x \mathbf{J}_x^{\top})^{-1} \mathbf{H}[x](v, v)$$

- Although dynamic requires velocity to be on tangent space at all times, all properties above are still satisfied even if that's not the case.
- However, one expects THUG bounce to be more precise if initial velocity has smaller normal component.

• THUG bounce is an explicit second-order integrator for the dynamics of a particle with constant speed and centripetal acceleration on *M*

$$\dot{x} = v$$

$$\dot{v} = -\mathbf{J}_x^{\top} (\mathbf{J}_x \mathbf{J}_x^{\top})^{-1} \mathbf{H}[x](v, v)$$

- Although dynamic requires velocity to be on tangent space at all times, all properties above are still satisfied even if that's not the case.
- However, one expects THUG bounce to be more precise if initial velocity has smaller normal component.
- Introduce squeezing matrix and operator for $\alpha \in [0, 1)$

$$T_{x,\alpha} = I_n - \alpha N_x$$
 and $T_\alpha(x,v) = (x, T_{x,\alpha}v)$
Squeezed THUG Bounce Precision

W

Applying \mathbb{T}_{α} with $\alpha > 0$ and $||v_0^{\perp}|| > 0$ before using the THUG bounce allows one to improve the previous constant \mathcal{B}_0

$$\|f(x'_B) - f(x_0)\| \leq \mathcal{B}_0 - \frac{\alpha(2-\alpha)\delta^2 \|v_0^\perp\|^2}{8} (2\beta + \gamma \|Tv_0\|) =: \mathcal{B}_\alpha,$$

here $\mathcal{B}_\alpha < \mathcal{B}_0$.

In practice we found that using $\alpha > 0$ can lead to important performance improvements when η_{ϵ} is particularly tight around \mathcal{M} .

Illustration of C-RWM and THUG

• $\mathbb{B}_{\text{THUG}} \circ \mathbb{T}_{\alpha}$ is not time-reversible.

- $\mathbb{B}_{\text{THUG}} \circ \mathbb{T}_{\alpha}$ is not time-reversible.
- Need to unsqueeze the velocity at the end via

$$\mathbf{T}_{x,\alpha}^{-1} = \mathbf{I}_n + \frac{\alpha}{1-\alpha} \mathbf{N}_x \quad \text{and} \quad \mathbb{T}_{\alpha}^{-1}(x,v) = (x, \mathbf{T}_{x,\alpha}^{-1}v).$$

- $\mathbb{B}_{\text{THUG}} \circ \mathbb{T}_{\alpha}$ is not time-reversible.
- Need to unsqueeze the velocity at the end via

$$\mathbf{T}_{x,\alpha}^{-1} = \mathbf{I}_n + \frac{\alpha}{1-\alpha} \mathbf{N}_x \quad \text{and} \quad \mathbf{T}_{\alpha}^{-1}(x,v) = (x, \mathbf{T}_{x,\alpha}^{-1}v).$$

• The full THUG proposal mechanism is $\mathbb{T}_{\alpha}^{-1} \circ \mathbb{B}_{\text{THUG}}^{B} \circ \mathbb{T}_{\alpha}$.

- $\mathbb{B}_{\text{THUG}} \circ \mathbb{T}_{\alpha}$ is not time-reversible.
- Need to unsqueeze the velocity at the end via

$$\mathbf{T}_{x,\alpha}^{-1} = \mathbf{I}_n + \frac{\alpha}{1-\alpha} \mathbf{N}_x \quad \text{and} \quad \mathbb{T}_{\alpha}^{-1}(x,v) = (x, \mathbf{T}_{x,\alpha}^{-1}v).$$

- The full THUG proposal mechanism is $\mathbb{T}_{\alpha}^{-1} \circ \mathbb{B}_{\mathrm{THUG}}^{B} \circ \mathbb{T}_{\alpha}$.
- Since the squeezing and unsqueezing operations happen at different positions, $||v_B||^2 ||v_0||^2$ will appear in the acceptance ratio.

- $\mathbb{B}_{\text{THUG}} \circ \mathbb{T}_{\alpha}$ is not time-reversible.
- Need to unsqueeze the velocity at the end via

$$\mathbf{T}_{x,\alpha}^{-1} = \mathbf{I}_n + \frac{\alpha}{1-\alpha} \mathbf{N}_x \quad \text{and} \quad \mathbb{T}_{\alpha}^{-1}(x,v) = (x, \mathbf{T}_{x,\alpha}^{-1}v).$$

- The full THUG proposal mechanism is $\mathbb{T}_{\alpha}^{-1} \circ \mathbb{B}_{\text{THUG}}^B \circ \mathbb{T}_{\alpha}$.
- Since the squeezing and unsqueezing operations happen at different positions, $||v_B||^2 ||v_0||^2$ will appear in the acceptance ratio.

No-free Lunch

The change in norm squared after using THUG with B steps with $\alpha \in [0,1)$ is

$$|v_B|^2 - ||v_0||^2 = \mathcal{O}\left(\delta \frac{\alpha(2-\alpha)}{(1-\alpha)^2}\right).$$

Algorithm 1: Tangential Hug (One Iteration)

- 1 Sample auxiliary: $v_0 \sim \mathcal{N}(0, I)$. Set $(x, v) = (x_0, v_0)$.
- 2 Squeeze: $v \leftarrow v \alpha \text{LinearProjection}(\mathbf{J}(x), v)$
- **3** for b = 1, ..., B do
- 4 Move: $x \leftarrow x + (\delta/2)v$
- 5 **Bounce:** $v \leftarrow v 2$ LinearProjection(J(x), v)
- 6 Move: $x \leftarrow x + (\delta/2)v$

7 **end**

- 8 Unsqueeze: $v \leftarrow v + (\alpha/(1-\alpha))$ LinearProjection(J(x), v)
- **9 MH:** Accept with prob $a = \exp(\ell(x) \ell(x_0) ||v||^2/2 + ||v_0||^2/2)$.

Experiments

Bayesian Inverse Problem - Acceptance Probability

- THUG/HMC/RM-HMC target $p_{\sigma}(\theta \mid y^*)$
- C-RWM target $p_{\sigma}(\theta, v \mid y^*)$ on

$$\mathcal{M}_{\sigma} = \{(\theta, \upsilon) : F(\theta) + \upsilon = y^*\}.$$

Notice $p_{\sigma}(\theta, v \mid y^*)$ remains diffuse for $\sigma \to 0$, unlike $p_{\sigma}(\theta \mid y^*)$.

Figure 1: Average Acceptance Probability for a grid of $\sigma > 0$ and $\delta > 0$. Results averaged over 10 runs of 50 samples each, keeping B = 20 fixed.

Bayesian Inverse Problem - Computational Cost

- Run 12 chains of 2500 samples keeping B = 20 and $\delta = 0.1$ fixed.
- Phase one: σ large then posterior is not filamentary and HMC is better.
- Phase two: σ small and THUG superior.
- Phase three: σ very small and C-HMC is more advantageous.

Figure 2: minESS over total runtime (in seconds).

ABC - G and K distribution - Computational Cost

- min-bulk-ESS across 4 chains of 1000 samples each for increasing dimensionality $m \in \{50, 100, 200\}$.
- Run algorithms for $B \in \{1, 10, 50\}, \epsilon \in \{10^0, \dots, 10^{-8}\}$ and $\alpha \in \{0, 0.9, 0.99\}.$

Figure 3: minESS over total runtime (in seconds).

ABC - G and K distribution - Density Estimation

10k samples after an initial warmup. Each algorithm run at their best ϵ .

- Real-world applications.
- Comparing manifold and filamentary distributions.
- Develop a suitable notion of ESS of these problems.

Thank you

References

- Au, K. X., Graham, M. M., and Thiery, A. H. Manifold lifting: scaling mcmc to the vanishing noise regime, 2021.
- Diaconis, P., Holmes, S., and Shahshahani, M. Sampling from a manifold, 2012.
- Federer, H. Geometric Measure Theory. Classics in Mathematics. Springer Berlin Heidelberg, 2014. ISBN 9783642620102. URL https://books.google.co.uk/books?id=jld-BgAAQBAJ.
- Graham, M. M. and Storkey, A. J. Asymptotically exact inference in differentiable generative models, 2017.

- Graham, M. M., Thiery, A. H., and Beskos, A. Manifold markov chain monte carlo methods for bayesian inference in diffusion models, 2019. URL https://arxiv.org/abs/1912.02982.
- Lelièvre, T., Rousset, M., and Stoltz, G. *Free Energy Computations*. IMPERIAL COLLEGE PRESS, 2010. doi: 10.1142/p579. URL https: //www.worldscientific.com/doi/abs/10.1142/p579.
- Lelièvre, T., Rousset, M., and Stoltz, G. Hybrid monte carlo methods for sampling probability measures on submanifolds, 2019.
- Ludkin, M. and Sherlock, C. Hug and hop: a discrete-time, non-reversible markov chain monte-carlo algorithm, 2019. URL *https://arxiv.org/abs/1907.13570*.

Zappa, E., Holmes-Cerfon, M., and Goodman, J. Monte carlo on manifolds: Sampling densities and integrating functions. *Communications on Pure* and Applied Mathematics, 71(12):2609–2647, 2018. doi: https://doi.org/10.1002/cpa.21783. URL https://onlinelibrary. wiley.com/doi/abs/10.1002/cpa.21783.

SMC Results - Fixed Step Size

SMC Results - Adapting Both

SMC Results - RWM followed by THUG

THUG MCMC III

Aim of Experiment

Does the acceptance probability of Hug/Thug deteriorate at slower rate than HMC/RM-HMC with respect to step size?

• Run Thug, Hug, RM-HMC and HMC to target filamentary posterior

 $p_{\sigma}(\theta \mid y) \propto p(\theta) \mathcal{N}(h(\theta), \sigma^2 \mathbf{I}).$

and C-HMC to target lifted manifold posterior

 $\overline{p}(\theta,\eta \mid y) \propto p(\theta)p(\eta)|J_{f_{\sigma}}(\theta,\eta)J_{f_{\sigma}}(\theta,\eta)^{\top}|^{-1/2}$

- Run across a grid of noise scale $\sigma \in (1 \times 10^{-5}, 1.0)$ and step-sizes $\delta \in (1 \times 10^{-5}, 1.0)$, keeping number of steps/bounces per iteration B = L = 20 fixed.
- Average acceptance probability across 10 runs of 50 samples.

Thug MCMC IV

HMC and RM-HMC need $\mathcal{O}(\delta) = \mathcal{O}(\sigma)$ for a good acceptance probability. Hug and Thug can achieve the same acceptance probability with 3 order of magnitude larger step-size.

Acceptance Probability vs Discretization Order

• Ludkin & Sherlock (2019) showed that when $f = \ell$, H is γ -Lipschitz and bounded above by $\beta > 0$ Hug satisfies

$$|\ell_B - \ell_0| \le \frac{\delta^2}{8} ||v_0||^2 (2\beta + \gamma T ||v_0||) =: \mathcal{B}_{\text{HUG}}$$

Thug satisfies a tighter bound when $\alpha > 0$ and $\hat{g}_0^\top v_0 \neq 0$

$$|\ell_B - \ell_0| \leq \mathcal{B}_{\text{HUG}} - \frac{\alpha(2-\alpha)\delta^2(\hat{g}_0^\top v_0)^2}{8}(2\beta + \gamma T ||v_0||) =: \mathcal{B}_{\text{THUG}}.$$

• When $f \neq \ell$ will require assumptions on relationship between f and ℓ

$$p_{\epsilon}(x \mid y) \propto p(x)k_{\epsilon}(\|y - f(x)\|)$$

For a Partitioned ODE

$$\dot{x} = F_1(x, v)$$
$$\dot{v} = F_2(x, v)$$

the Generalized Position Verlet (GPV) integrator

$$\begin{aligned} x_{n+1/2} &= x_n + \frac{\delta}{2} F_1(x_{n+1/2}, v_n) \\ v_{n+1} &= v_n + \frac{\delta}{2} \left[F_2(x_{n+1/2}, v_n) + F_2(x_{n+1/2}, v_{n+1}) \right] \\ x_{n+1} &= x_{n+1/2} + \frac{\delta}{2} F_1(x_{n+1/2}, v_{n+1}) \end{aligned}$$

is implicit, second-order, symmetric and symplectic.

For a Separable ODE

$$\dot{x} = F_1(v)$$
$$\dot{v} = F_2(x)$$

the GPV integrator

$$x_{n+1/2} = x_n + \frac{\delta}{2}F_1(v_n)$$

$$v_{n+1} = v_n + \delta F_2(x_{n+1/2})$$

$$x_{n+1} = x_{n+1/2} + \frac{\delta}{2}F_1(v_{n+1})$$

is **explicit**, second-order, symmetric and symplectic.

Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable system is implicit, it turns out that one can actually solve explicitly for v_{n+1} in the velocity update.

$$v_{n+1} = \underbrace{v_n - \frac{\delta}{2} \frac{v_n^\top H_F(x_{n+1/2}v_n)}{\|\nabla_x F(x_{n+1/2})\|} \widehat{\nabla_x F(x_{n+1/2})}}_{:=a} \\ \underbrace{-\frac{\delta}{2} \frac{\widehat{\nabla_x F(x_{n+1/2})}}_{\|\nabla_x F(x_{n+1/2})\|}}_{=:b} v_{n+1}^\top H_F(x_{n+1/2})v_{n+1},$$

then the expression has the form (we write $H_{n+1/2} = H(x_{n+1/2})$)

$$v_{n+1} = a + bv_{n+1}^{\top} H_{n+1/2} v_{n+1}.$$

This can be solved by solving a simple quadratic equation for ϑ

$$c_1\vartheta^2 + (2c_2 - 1)\vartheta + c_3 = 0$$

where

$$c_1 = b^{\top} H_{n+1/2} b$$

 $c_2 = a^{\top} H_{n+1/2} b$
 $c_3 = a^{\top} H_{n+1/2} a.$

Interestingly, this discretization works well for sampling from filamentary distributions only when the initial velocity is perpendicular to the gradient at the initial position $v_0 \perp \hat{g}_0$, otherwise it quickly blows up. This is in contrast with the generalised Hug algorithm which remains stable thanks to the BPS reflection mechanism.

Let π be a filamentary distribution whose limiting manifold distribution is $\overline{\pi}$. A general approximate manifold sampling algorithm consists of a triplet (H_p, Φ, H_a) where

- H_p is a Hamiltonian system that forms the base of our proposal mechanism. A good H_p would follow/stay close to \mathcal{M} and perhaps be a good Hamiltonian system for $\overline{\pi}$.
- Φ is a reversible (or skew-reversible) integrator for H_p of suitably high order and preferably with $|\det J_{\Phi}| = 1$, symplecticity is desired but not needed.
- H_a is a Hamiltonian that determines which samples get accepted or rejected. This should include π for the algorithm to be correct.

Contours of Filamentary Distribution

Tangential Hug Stays closer

Manifold Distributions I

Transformation of Random Variable by Diffeomorphism

Let *X* be an \mathbb{R}^n -valued random vector with density p_X . Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism and Y = f(X). Then

$$p_Y(y)dy = p_X(f^{-1}(y))|\det J_{f^{-1}}(y)|dy$$

The Co-Area formula for Lipschitz functions generalizes the above results to non-injective functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold

Let *X* be an \mathbb{R}^n -valued random vector with density p_X . Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a smooth function with n > m, and let $y \in \mathbb{R}^m$. Then on the sub-manifold $f^{-1}(y)$

 $p(x \mid f(x) = y) \mathcal{H}^{n-m}(dx) \propto p_X(x) |\det(J_f(x)J_f(x)^{\top})|^{-1/2} \mathcal{H}^{n-m}(dx)$

Assumption 2

 π admits a density with respect to the Hausdorff measure on $\mathcal{M}.$

Manifold Distribution

Let $X : \Omega \to \mathbb{R}^n$ be a vector-valued random variable with distribution π and finite covariance matrix $\mathbb{V}_{\pi}[X]$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Consider $y \in \mathbb{R}$ fixed, then at any point $\xi \in f^{-1}(y)$ we denote by $\hat{g}(\xi)$ the normalized gradient of f and by $\mathsf{T}(\xi) = \{\hat{t}_1(\xi), \dots, \hat{t}_{n-1}(\xi)\}$ a basis for the tangent space at ξ . Then π is a manifold distribution if $\forall \xi \in \mathbb{R}^n$ and $\forall \hat{t}_i(\xi) \in \mathsf{T}(\xi)$

 $\hat{g}(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{g}(\xi) = 0$ and $\hat{t}_i(\xi)^{\top} \mathbb{V}_{\pi}[X] \hat{t}_i(\xi) > 0.$

Typically obtained as limiting posterior density as some scale parameter goes to zero.

Manifold Distribution

Let U be an \mathbb{R}^n -valued random variable, and $f : \mathbb{R}^n \to \mathbb{R}^m$ be smooth. Let $\mathcal{K}(y, du)$ be a regular conditional distribution of U given $\sigma(f(U))$ and let \mathcal{H}_y^{n-m} be the Hausdorff measure on $f^{-1}(y)$. If $\mathcal{K}(y, \cdot) \ll \mathcal{H}_y^{n-m}$ then $\pi = \mathcal{K}(y, \cdot)$ is a manifold distribution.

Manifold Distribution IV

Graham's Theorem Revisited

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $U : \Omega \to \mathbb{R}^n$ be a random vector with distribution P_U and density p_U with respect to λ^n , the Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Let n > m and $f : \mathbb{R}^n \to \mathbb{R}^m$ be a smooth function with Jacobian matrix $J_f(u)$ having full row-rank λ^n -almost everywhere, and let $f \circ U$ have distribution $P_f = P_U \circ f^{-1}$. Let $\sigma(f)$ be the sigma-algebra generated by $f \circ U$, and let $\phi : \mathbb{R}^n \to \mathbb{R}$ be a $\mathcal{B}(\mathbb{R}^n)$ -measurable test function. Let K(y, du) be a RCD of U given $\sigma(f)$ from $(\mathbb{R}^m, \sigma(f))$ to $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, such that $K(y, \cdot) \ll \mathcal{H}^{n-m}$. Then expectations with respect to K can be written as

$$\mathbb{E}[\phi(U) \mid f(U) = y] = \int_{f^{-1}(\{y\})} \phi(u) k_y(u) \mathcal{H}^{n-m}(du)$$

where $k_y(u)$ is the density of $K(y, \cdot)$ on $f^{-1}(\{y\})$ with respect to \mathcal{H}^{n-m} , given by

$$k_y(u) \propto p_U(u) \left| \det J_f(u) J_f(u)^\top \right|^{-1/2}$$

Let \mathcal{X} and \mathcal{Y} be manifolds and $f : \mathcal{X} \to \mathcal{Y}$ be smooth.

Regular Value

Then $y \in \mathcal{Y}$ is a **regular value** for f if for all $x \in f^{-1}(y)$ the differential $df_x : \mathcal{T}_x \mathcal{X} \to \mathcal{T}_y \mathcal{Y}$ is surjective. (alternatively, f is a submersion at every $x \in f^{-1}(y)$).

Preimage Theorem

If $y \in \mathcal{Y}$ is a regular value of f then $f^{-1}(y)$ is a submanifold of \mathcal{X} .
Filamentary Distributions

Assumption 1

Manifold of interest has co-dimension 1.

Filamentary Distribution

Let $X : \Omega \to \mathbb{R}^n$ be a vector-valued random variable with distribution π and finite covariance matrix $\mathbb{V}_{\pi}[X]$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Consider $y \in \mathbb{R}$ fixed, then at any point $\xi \in f^{-1}(y)$ we denote by $\hat{g}(\xi)$ the normalized gradient of f and by $\mathsf{T}(\xi) = \{\hat{t}_1(\xi), \ldots, \hat{t}_{n-1}(\xi)\}$ a basis for the tangent space at ξ . We say that π is a filamentary distribution if

$$\forall \xi \in \mathbb{R}^n, \quad \forall \hat{t}_i(\xi) \in \mathsf{T}(\xi) \qquad 0 < \hat{g}(\xi)^\top \mathbb{V}_{\pi}[X] \hat{g}(\xi) \ll \hat{t}_i(\xi)^\top \mathbb{V}_{\pi}[X] \hat{t}_i(\xi).$$

In practice one doesn't need to check the definition, it will be clear if the posterior has a filamentary structure.

- Filamentary distributions are highly concentrated around a submanifold.
- Orthogonal scaling \ll tangential scaling.