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Overview

* Probability distributions on lower-dimensional submanifolds:
* Bayesian inverse problems (Au et al., 2021)
» Approximate Bayesian Computation (Graham & Storkey, 2017)
* Molecular Dynamics (Leliévre et al., 2010)
» Topological Statistics (Diaconis et al., 2012)
 Diffusion models (Graham et al., 2019)
 Constrained samplers such as C-HMC and C-RWM (Leliévre et al.,
2019; Zappa et al., 2018) are very expensive: require 2 calls to
optimization routines per sample.

* Contribution: avoid costly operations by developing an efficient
sampler (THUG) for a relaxation of the problem.



Application: Bayesian Inverse Problems

e Observational model with data-generating mechanism
y=F@)+v v~N(0,0o) F smooth.
* Observe y* and perform inference on
Po(81y*) < p(O)N(F(9) | y*,0T)
» For o0 > 0 small the posterior is concentrated around
M={0cO : FO)=y"}.

« For o — 0 the posterior p, (6 | y*) is supported on M.



Application: Bayesian Inverse Problem!

* Let F(6p,01) = 6% + 303(63 — 1) and observe y* = 1.

* Posterior for 3 values of noise scale. Samples via HMC.

c=0.5 c=0.1 c=0.02
/ N —
< < \( <
\n/ ~
6o 6o 6o

1Au et al. (2021)
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* Ateach x € f~!(y) tangent T, and normal A, spaces are defined.
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Assumptions

Facts and Notation

« J full row-rank and 7,,, f := | det J(2)J(2)T|'/? > 0 a.e.



Assumptions and Notation

Assumptions

Facts and Notation

» T, and N, projection matrices well-defined a.e.



Assumptions and Notation

Assumptions

Facts and Notation

« H"~™(dx) Hausdorff measure on f~1(y).
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General Setup

Observe y* € R™.

 Exact Manifold Sampling:

+ Posterior: 7(x) restricted on £~ (y*) (Manifold Distribution)

7](“3) = ﬂ(m)j,,,,f_l(x)

» Approximate Manifold Sampling

+ Posterior: 7(x) concentrated around £~ (y*) (Filamentary Distribution)
ne(z) = m(@)ke(lly” — f(2)I)
where k. is a kernel (approximation to the identity).

When is this relaxation sensible?
Ep [¥] = Ey[y] as e — 0F



What smoothing kernels are allowed?

Definition (Approximation to the identity (ATI))

A sequence {k. : R"™ — R}.~( of integrable functions is an
approximation to the identity if there exists a constant A such that

/ ke(y)dy =1 Ve>0

[ke(y)| < — Ve>0,Vy e R™

Ae m
|ke(U)|§Hy”T+1 Ve>0,Vy e R™\{0}



Convergence of Filamentary Distributions

Theorem

Let f : R™ — R™ Lipschitz, with J full row-rank almost everywhere. Let
1 : R™ — R be w-integrable, and {k.}.~o be an ATI. Then for almost
every y* € R™

lim ) (x)ne(x)de = / Y(x)n(x)H" ™ (dx)

e—0t R f=t(y*)

Weaker conditions on ¢ are possible (see paper).



Exact Manifold Sampling



Constrained Random Walk Metropolis (C-RWM)

* Proposal Step Given z € M, sample a Gaussian perturbation on the
tangent space’ v € 7, and move to y = x + v. Typically y ¢ M so a
non-linear projection is required: find A € R™ such that ' = y + J] A
lies on M via e.g. Newton method (Au et al., 2021).

* Reversibility Check Multiple such A might exist, but not all might
satisfy detailed balance. Need to check that running the algorithm
backwards from =’ one would get to = with tolerance p > 0.

 Acceptance Step Metropolis-Hastings

N |0.1)]

a(x,x’) :min{l7 n@N@]0.0)

2Sample v ~ N(0,1,,) and project v = Ty v.



Ilustration of C-RWM
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The concept of a bounce

Imagine a billiard ball hitting the cushion of a pool table. A bounce is the

composition of three operations: movement, a of the
direction of motion, and another movement in this new
direction.

Bounce

For any orthogonal matrix R, and step size § > 0 the bounce

Brs(x,v) = (x + gv + ngRv)

is time-reversible and volume-preserving, i.e.

* ¢ oBg s(z,v) is an involution (here ¢(z,v) = ¢(z, —v)).

* has unit absolute determinant Jacobian | det(Jg, ;)| = 1.
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THUG Bounce

+ Tangential Hug (THUG) uses a particular reflection matrix

R=1, - 2Nm+(§/2)v-
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THUG Bounce

+ Tangential Hug (THUG) uses a particular reflection matrix
R= In - 2Nm+(5/2)v-

* Velocity reflection off 7 (s/2)., the tangent space at the bounce point.
* Intuition: Moving along N, would lead to largest change in f, so by
going in the opposite direction we are trying to minimize this change.
THUG Bounce Precision (inspired by Ludkin & Sherlock (2019))
Let f : R™ — R™ be smooth, and let J,, and H[z] be its Jacobian matrix
and Hessian tensor respectively. If H is bounded by 8 € (0, co) and

~-Lipschitz, then applying the THUG bounce B € Z_ times starting from
o, v9 € R™ gives

- 62|vol|?

1f(B) = f(zo)| < —g=— (28 +7[[Twoll) =: Bo
where 7' = B4 is the total integration time.
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THUG bounce as an integrator I

* THUG bounce is an explicit second-order integrator for the dynamics
of a particle with constant speed and centripetal acceleration on M

B=G

b= ~37(3,37) " Hlz](v,v)
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THUG bounce as an integrator I

* THUG bounce is an explicit second-order integrator for the dynamics
of a particle with constant speed and centripetal acceleration on M

B=
0 =—J; (JoJ3) " Hlz] (v, 0)
+ Although dynamic requires velocity to be on tangent space at all times,

all properties above are still satisfied even if that’s not the case.

» However, one expects THUG bounce to be more precise if initial
velocity has smaller normal component.

¢ Introduce squeezing matrix and operator for o € [0, 1)

Tyo=1,—aNy and To(z,v) = (2, Ty ov)
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THUG bounce as an integrator I1

Squeezed THUG Bounce Precision

Applying T,, with o« > 0 and ||vg-|| > 0 before using the THUG bounce
allows one to improve the previous constant 5,

(2 — a)d?|vg |

LI (26 +9|Tuo ) = Ba

1 (z5) — f(xo)ll < Bo —
where B, < By.

In practice we found that using o > 0 can lead to
when 7, is around M.
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Ilustration of C-RWM and THUG

yeTy ¥~ Nxo, Za)
" 0. Linear
Non-lincar N )
Y Projection *~.._Projection
o (6} =
X0 X1 EM X0

)
X1 ¢ M
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Tangential Hug (THUG)

* Bryug © Ty, is not time-reversible.
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Tangential Hug (THUG)

* Bryug © Ty, is not time-reversible.
* Need to unsqueeze the velocity at the end via
e

1=I,+—N, and T, (z,v) = (J:,T;}Xv).

T;
x, 2 =@
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Tangential Hug (THUG)

* Bryug © Ty, is not time-reversible.
* Need to unsqueeze the velocity at the end via

i=0+ LN_% and T, (z,v) = (J:,T;}Xv).

T;
x, 2 =@

* The full THUG proposal mechanism is T, o B, o T,.
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Tangential Hug (THUG)

* Bryug © Ty, is not time-reversible.
* Need to unsqueeze the velocity at the end via

T;}Y =1, + %Nm and ’]I‘;l(x,v) = (:L’,T;}yv).
@ T : z0

* The full THUG proposal mechanism is T, o B, o T,.

« Since the squeezing and unsqueezing operations happen at different
positions, ||vg||? — ||vo||? will appear in the acceptance ratio.
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Tangential Hug (THUG)

* Bryug © Ty, is not time-reversible.
* Need to unsqueeze the velocity at the end via
e

L =1, + 17Nx and T, (z,v) = (x, T, Lv).
et T , 0

T
* The full THUG proposal mechanism is T, o B, o T,.

« Since the squeezing and unsqueezing operations happen at different
positions, ||vg||? — ||vo||? will appear in the acceptance ratio.

No-free Lunch
The change in norm squared after using THUG with B steps with

a€l0,1)is
onll? — luall? = a2-a)
los? = ool? =0 (55255,
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Tangential Hug (THUG) Algorithm

Algorithm 1: Tangential Hug (One Iteration)

1 Sample auxiliary: vy ~ N(0,1). Set (z,v) = (xg, vo).

2 Squeeze: v <— v — aLinearProjection(J(z),v)
3forb=1,...,Bdo

4 Move: © «— x + (§/2)v

5 Bounce: v «— v — 2LinearProjection(J(z), v)

6 Move: © +— x + (§/2)v

end

8 Unsqueeze: v <— v+ (a/(1 — a))LinearProjection(J(x),v)

9 MH: Accept with prob a = exp(¢(x) — £(zo) — ||[v||?/2 + ||vol|?/2).

~N
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Experiments




Bayesian Inverse Problem - Acceptance Probability

« THUG/HMC/RM-HMC target p, (6 | y*)
« C-RWM target p,(6,v | y*) on
o ={(0,v) : F(0) +v=y"}.

Notice p, (0, v | y*) remains diffuse for o — 0, unlike p, (6 | y*).

RM-HMC

C-RWM THUG

10°
10!
102
w0

107
107

10°°105 107 107 102 107" 10°

1075107 107 1072 107" 100 1075 1074 107% 1072 107" 10° 105 10 10~ 1072 107

Figure 1: Average Acceptance Probability for a grid of o > 0 and § > 0. Results
averaged over 10 runs of 50 samples each, keeping B = 20 fixed.
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Bayesian Inverse Problem - Computational Cost

* Run 12 chains of 2500 samples keeping B = 20 and § = 0.1 fixed.
 Phase one: o large then posterior is not filamentary and HMC is better.
 Phase two: o small and THUG superior.

* Phase three: ¢ very small and C-HMC is more advantageous.

10%
—@— THUG P
o
E 10!
i
g
A 0
2
e
=
107!
Lo}
[ © © @
107 107 1073 1072 107! 10°

Noise Scale 6

Figure 2: minESS over total runtime (in seconds).
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ABC - G and K distribution - Computational Cost

» min-bulk-ESS across 4 chains of 1000 samples each for increasing
dimensionality m € {50, 100, 200}.

* Run algorithms for B € {1,10,50}, ¢ € {10°,...,107%} and
a € 4{0,0.9,0.99}.

10°

minESS/runtime

X X X X X X X X X

X X X X X X X X X
107 10 10 107 107 107 10 107 107 10 10 107
e e e

Figure 3: minESS over total runtime (in seconds).
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ABC - G and K distribution - Density Estimation

10k samples after an initial warmup. Each algorithm run at their best e.

—— RWM
THUG
oTHUG
—— CRWM
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Conclusion and Future Work

» Real-world applications.
+ Comparing manifold and filamentary distributions.

* Develop a suitable notion of ESS of these problems.

21



Thank you
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SMC Results - Fixed Step Size
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SMC Results - Adapting Both

Unique Particles Step Size ESS Acceptance Probability
5000 5000 10"
4000 107 4800
4600
3000 107"
107 4400
2000 — aTHUG
4200 RWM
1000 107 1072 — THUG
0% 10 107 10 10°% 107 10 10" 10" 107 107 10" 0% 107 107 10
€ € € €
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SMC Results - RWM followed by THUG

Unique Particles o ESS Acceptance Probability
5000 10 5000 10
08
4000 4800
06
3000 4600 107
04
2000 o 4400 —— aTHUG
. = THUG
2 RWM
1000 0.0 4200 10
10+ 107 10" 10° 10+ 107 10" 10° 10 107 10" 10° 10 107 10" 10°
€ € € €
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THUG MCMC II1

Aim of Experiment
Does the acceptance probability of Hug/Thug deteriorate at slower rate
than HMC/RM-HMC with respect to step size?

* Run Thug, Hug, RM-HMC and HMC to target filamentary posterior
Pa (0 1Y) o p(OIN (R(6), o°T).
and C-HMC to target lifted manifold posterior
(0,0 | y) o< p(@)p(m)| Tz, (0,m)Tr, (0,m) |71/

* Run across a grid of noise scale o € (1 x 1075, 1.0) and step-sizes
d € (1 x 1075, 1.0), keeping number of steps/bounces per iteration
B = L = 20 fixed.

 Average acceptance probability across 10 runs of 50 samples.
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Thug MCMC IV

HMC and RM-HMC need O(§) = O(o) for a good acceptance probability.
Hug and Thug can achieve the same acceptance probability with 3 order of
magnitude larger step-size.

C-HMC THUG HUG 10
10° :

107!

102 0.8

@

1073
1074

0.6

107 T T T T T T
1075 1074 10-? 1072 10" 10°
RM-HMC HMC @

10°

0.4
107!
102

©

1072 0.2
104
s

10 0.0

101071071072 107% 10°  107° 1074 1073 1072 107} 10°
o o
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Acceptance Probability vs Discretization Order

 Ludkin & Sherlock (2019) showed that when f = ¢, H is y-Lipschitz
and bounded above by 8 > 0 Hug satisfies

62
[tp — fo| < §||UO||2(2/5’ + YT ||voll) =: Buuc

Thug satisfies a tighter bound when o > 0 and g vo # 0

(2 — a)8%(gg vo)?
8

[ — 4o| < Buuc — (28 +T||lvol]) =: Brauc-

* When f # ¢ will require assumptions on relationship between f and ¢

pe(z | y) o p(@)ke(lly — f()])
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GPV for Partitioned Systems

For a Partitioned ODE

T = Fi(z,v)
v = Fy(x,v)

the Generalized Position Verlet (GPV) integrator
)
Tp41/2 = Tn + §F1(9Cn+1/2771n)
0
Un41 = Up + 3 [F2(90n+1/27vn) + F2(9Cn+1/27vn+1)]

1)
T4l = Tpg1/2 + §F1($n+1/27 Unt1)

is implicit, second-order, symmetric and symplectic.
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GPV for Separable Systems

For a Separable ODE

the GPV integrator

1)
Tpy1/2 = Tn + §F1(Un)
Unt1 = Un + 0F5(Znt1/2)
Tn+1 = Tpt1/2 + §F1(’Un+1)

is explicit, second-order, symmetric and symplectic.
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Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable
system is implicit, it turns out that one can actually solve explicitly for v,, 41
in the velocity update.

0 (U;LFHF (ITL-‘rl/QlUn ==
———— """V, F(x

2 VP @yl o )

=a

) ﬁ(u’ﬁnﬂm) T
Y Uy, HF(ITL 1 2)”n+17
2 [VaF (@)l " o

Un4+1 = Un

=:b

then the expression has the form (we write H,, 1/ = H(2y,41/2))
Un41 = G+ bUZHHn+1/2Un+1-
This can be solved by solving a simple quadratic equation for v

01192 —+ (2()2 - 1)’(9 + C3 = 0
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Alternative Integrator 11

where

c1 =b" Hyyq/9b
Co = aTHn+1/2b

T
c3=a Hyiqa.

Interestingly, this discretization works well for sampling from filamentary
distributions only when the initial velocity is perpendicular to the gradient at
the initial position vy L gg, otherwise it quickly blows up. This is in contrast
with the generalised Hug algorithm which remains stable thanks to the BPS
reflection mechanism.
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A General Approximate Manifold Sampling Framework

Let 7 be a filamentary distribution whose limiting manifold distribution is 7.
A general approximate manifold sampling algorithm consists of a triplet
(Hp, ®, H,) where

* H, is a Hamiltonian system that forms the base of our proposal
mechanism. A good H,, would follow/stay close to M and perhaps be a
good Hamiltonian system for 7.

* @ is areversible (or skew-reversible) integrator for /7,, of suitably high
order and preferably with | det .Jg| = 1, symplecticity is desired but not
needed.

* H, is a Hamiltonian that determines which samples get accepted or
rejected. This should include 7 for the algorithm to be correct.
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Contours of Filamentary Distribution

37



Tangential Hug Stays closer

o Hug o Tangential Hug
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Manifold Distributions I

Transformation of Random Variable by Diffeomorphism
Let X be an R"-valued random vector with density px. Let f : R — R"
be a diffeomorphism and Y = f(X). Then

py (W) v =px(f7'(y)) det Jp-1 (y)|

The for Lipschitz functions generalizes the above results to
functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold

Let X be an R"-valued random vector with density px. Let f : R” — R™
be a smooth function with n > m, and let y € R™. Then on the
sub-manifold f~(y)

p(z | f(z) =y) o px ()] det(Jy (2) Iy () )| 72
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Manifold Distributions IT

7 admits a density with respect to the Hausdorff measure on M.

Manifold Distribution

Then 7 is a manifold distribution if
V¢ € R™ and V#;(€) € T(€)

96 Va[X]g€) =0  and (&) Va[X]E:(€) > 0.
Typically obtained as limiting posterior density as some scale parameter
goes to zero.
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Manifold Distribution III

Manifold Distribution

Let U be an R™-valued random variable, and f : R™ — R be smooth.
Let K(y, du) be a regular conditional distribution of U given o(f(U)) and
let 1/~ be the Hausdorff measure on f~'(y). If K(y,-) < Hj =" then
m = K(y, -) is a manifold distribution.
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Manifold Distribution IV

Graham’s Theorem Revisited

Let (2, 7, P) be a probability space, U : €2 — R" be a random vector with
distribution P;; and density p;; with respect to A", the Lebesgue measure
on (R™, B(R™)). Letn >m and f : R™ — R be a smooth function with
Jacobian matrix J¢(u) having full row-rank A”-almost everywhere, and let
f o U have distribution Py = Py o f~'. Let o(f) be the sigma-algebra
generated by f o U, and let ¢ : R™ — R be a B(IR™)-measurable test
function. Let K(y, du) be a RCD of U given o(f) from (R™,o(f)) to
(R™, B(R™)), such that K(y, -) < H™ ™. Then expectations with respect
to K can be written as

Big(U) | S0) == [ otk (" )

where £, (u) is the density of K(y, -) on f~*({y}) with respect to H" ™,
given by
~1/2
by () oc pu (u) |det 7 (w); (w)T| 2.
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When is /~!(y) a submanifold?

Let A and ) be manifolds and f : X — )’ be smooth.

Regular Value

Then y € ) is a regular value for f if for all # € f~1(y) the differential
dfy : To X — T,) is surjective. (alternatively, f is a submersion at every

z e f~'(y).

Preimage Theorem

If y € YV is a regular value of f then f~!(y) is a submanifold of X.
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Filamentary Distributions

Manifold of interest has co-dimension 1.

Filamentary Distribution

Let X : 2 — R" be a vector-valued random variable with distribution 7
and finite covariance matrix V[X], and let f : R™ — R be a smooth
function. Consider y € R fixed, then at any point ¢ € f~!(y) we denote
by §(€) the normalized gradient of f and by T(¢) = {£1(¢),...,tn_1(&)}
a basis for the tangent space at £&. We say that 7 is a filamentary
distribution if

VEER™, V(£ eTE)  0<g&)TVaX]g(8) < (&) TVAIX]E:(E).

In practice one doesn’t need to check the definition, it will be clear if the
posterior has a filamentary structure.

+ Filamentary distributions are around a submanifold.
 Orthogonal scaling < tangential scaling. a4
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