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Motivation



Overview

• Probability distributions on lower-dimensional submanifolds:
• Bayesian inverse problems (Au et al., 2021)
• Approximate Bayesian Computation (Graham & Storkey, 2017)
• Molecular Dynamics (Lelièvre et al., 2010)
• Topological Statistics (Diaconis et al., 2012)
• Diffusion models (Graham et al., 2019)

• Constrained samplers such as C-HMC and C-RWM (Lelièvre et al.,
2019; Zappa et al., 2018) are very expensive: require 2 calls to
optimization routines per sample.

• Contribution: avoid costly operations by developing an efficient
sampler (THUG) for a relaxation of the problem.
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Application: Bayesian Inverse Problems

• Observational model with data-generating mechanism

y = F (θ) + υ υ ∼ N (0, σ2I) F smooth.

• Observe y∗ and perform inference on

pσ(θ | y∗) ∝ p(θ)N (F (θ) | y∗, σ2I)

• For σ > 0 small the posterior is concentrated around

M = {θ ∈ Θ : F (θ) = y∗} .

• For σ → 0 the posterior pσ(θ | y∗) is supported onM.
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Application: Bayesian Inverse Problem1

• Let F (θ0, θ1) = θ21 + 3θ20(θ
2
0 − 1) and observe y∗ = 1.

• Posterior for 3 values of noise scale. Samples via HMC.

1Au et al. (2021)
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Tools and Background



Assumptions and Notation

Assumptions

• n > m.

• π(x) prior density on Rn wrt Lebesgue measure.

• f : Rn → Rm smooth

Facts and Notation

• f−1(y) manifold for almost every y ∈ Rm.

• At each x ∈ f−1(y) tangent Tx and normal Nx spaces are defined.

• J full row-rank and Jmf := | det J(x)J(x)⊤|1/2 > 0 a.e.

• Tx and Nx projection matrices well-defined a.e.

• Hn−m(dx) Hausdorff measure on f−1(y).
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General Setup

Observe y∗ ∈ Rm.

• Exact Manifold Sampling:

• Posterior: π(x) restricted on f−1(y∗) (Manifold Distribution)

η(x) = π(x)Jmf−1(x)

• Approximate Manifold Sampling

• Posterior: π(x) concentrated around f−1(y∗) (Filamentary Distribution)

ηϵ(x) = π(x)kϵ(∥y∗ − f(x)∥)

where kϵ is a kernel (approximation to the identity).

When is this relaxation sensible?
Eηϵ

[ψ]→ Eη[ψ] as ϵ→ 0+
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What smoothing kernels are allowed?

Definition (Approximation to the identity (ATI))
A sequence {kϵ : Rm → R}ϵ>0 of integrable functions is an
approximation to the identity if there exists a constant A such that∫

Rm

kϵ(y)dy = 1 ∀ ϵ > 0

|kϵ(y)| ≤
A

ϵm
∀ ϵ > 0, ∀y ∈ Rm

|kϵ(y)| ≤
Aϵ

∥y∥m+1
∀ ϵ > 0, ∀ y ∈ Rm\{0}
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Convergence of Filamentary Distributions

Theorem
Let f : Rn → Rm Lipschitz, with J full row-rank almost everywhere. Let
ψ : Rn → R be π-integrable, and {kϵ}ϵ>0 be an ATI. Then for almost
every y∗ ∈ Rm

lim
ϵ→0+

∫
Rn

ψ(x)ηϵ(x)dx =

∫
f−1(y∗)

ψ(x)η(x)Hn−m(dx)

Alternative Theorems
Weaker conditions on ψ are possible (see paper).
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Exact Manifold Sampling



Constrained RandomWalk Metropolis (C-RWM)

• Proposal Step Given x ∈M, sample a Gaussian perturbation on the
tangent space2 v ∈ Tx and move to y = x+ v. Typically y /∈M so a
non-linear projection is required: find λ ∈ Rm such that x′ = y + J⊤x λ

lies onM via e.g. Newton method (Au et al., 2021).

• Reversibility Check Multiple such λ might exist, but not all might
satisfy detailed balance. Need to check that running the algorithm
backwards from x′ one would get to x with tolerance ρ > 0.

• Acceptance StepMetropolis-Hastings

a(x, x′) = min

{
1,
η(x′)N (v′ | 0, I)
η(x)N (v | 0, I)

}
.

2Sample ν ∼ N (0, In) and project v = Txν.
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Illustration of C-RWM
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Approximate Manifold Sampling



The concept of a bounce

Imagine a billiard ball hitting the cushion of a pool table. A bounce is the
composition of three operations: straight line movement, a reflection of the
direction of motion, and another straight line movement in this new
direction.

Bounce
For any orthogonal matrix R, and step size δ > 0 the bounce

BR,δ(x, v) =

(
x+

δ

2
v +

δ

2
Rv,Rv

)
is time-reversible and volume-preserving, i.e.

• ϕ ◦ BR,δ(x, v) is an involution (here ϕ(x, v) = ϕ(x,−v)).
• has unit absolute determinant Jacobian | det(JBR,δ

)| = 1.
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THUG Bounce

• Tangential Hug (THUG) uses a particular reflection matrix

R = In − 2Nx+(δ/2)v.

• Velocity reflection off Tx+(δ/2)v , the tangent space at the bounce point.
• Intuition: Moving along Nx would lead to largest change in f , so by
going in the opposite direction we are trying to minimize this change.

THUG Bounce Precision (inspired by Ludkin & Sherlock (2019))
Let f : Rn → Rm be smooth, and let Jx and H[x] be its Jacobian matrix
and Hessian tensor respectively. If H is bounded by β ∈ (0,∞) and
γ-Lipschitz, then applying the THUG bounce B ∈ Z+ times starting from
x0, v0 ∈ Rn gives

∥f(xB)− f(x0)∥ ≤
δ2∥v0∥2

8
(2β + γ∥Tv0∥) =: B0

where T = Bδ is the total integration time.
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THUG bounce as an integrator I

• THUG bounce is an explicit second-order integrator for the dynamics
of a particle with constant speed and centripetal acceleration onM

ẋ = v

v̇ = −J⊤x (JxJ⊤x )−1H[x](v, v)

• Although dynamic requires velocity to be on tangent space at all times,
all properties above are still satisfied even if that’s not the case.

• However, one expects THUG bounce to be more precise if initial
velocity has smaller normal component.

• Introduce squeezing matrix and operator for α ∈ [0, 1)

Tx,α = In − αNx and Tα(x, v) = (x,Tx,αv)
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THUG bounce as an integrator II

Squeezed THUG Bounce Precision
Applying Tα with α > 0 and ∥v⊥0 ∥ > 0 before using the THUG bounce
allows one to improve the previous constant B0

∥f(x′B)− f(x0)∥ ≤ B0 −
α(2− α)δ2∥v⊥0 ∥2

8
(2β + γ∥Tv0∥) =: Bα,

where Bα < B0.

In practice we found that using α > 0 can lead to important performance
improvements when ηϵ is particularly tight aroundM.
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Illustration of C-RWM and THUG
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Tangential Hug (THUG)

• BTHUG ◦ Tα is not time-reversible.

• Need to unsqueeze the velocity at the end via

T−1
x,α = In +

α

1− α
Nx and T−1

α (x, v) = (x,T−1
x,αv).

• The full THUG proposal mechanism is T−1
α ◦ BB

THUG ◦ Tα.

• Since the squeezing and unsqueezing operations happen at different
positions, ∥vB∥2 − ∥v0∥2 will appear in the acceptance ratio.

No-free Lunch
The change in norm squared after using THUG with B steps with
α ∈ [0, 1) is

∥vB∥2 − ∥v0∥2 = O
(
δ
α(2− α)
(1− α)2

)
.
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Tangential Hug (THUG) Algorithm

Algorithm 1: Tangential Hug (One Iteration)

1 Sample auxiliary: v0 ∼ N (0, I). Set (x, v) = (x0, v0).
2 Squeeze: v ←− v − αLinearProjection(J(x), v)
3 for b = 1, . . . , B do
4 Move: x ←− x+ (δ/2)v

5 Bounce: v ←− v − 2LinearProjection(J(x), v)
6 Move: x ←− x+ (δ/2)v

7 end
8 Unsqueeze: v ←− v + (α/(1− α))LinearProjection(J(x), v)
9 MH: Accept with prob a = exp(ℓ(x)− ℓ(x0)− ∥v∥2/2 + ∥v0∥2/2).
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Experiments



Bayesian Inverse Problem - Acceptance Probability

• THUG/HMC/RM-HMC target pσ(θ | y∗)
• C-RWM target pσ(θ, υ | y∗) on

Mσ = {(θ, υ) : F (θ) + υ = y∗} .

Notice pσ(θ, υ | y∗) remains diffuse for σ → 0, unlike pσ(θ | y∗).

Figure 1: Average Acceptance Probability for a grid of σ > 0 and δ > 0. Results
averaged over 10 runs of 50 samples each, keeping B = 20 fixed.

17



Bayesian Inverse Problem - Computational Cost

• Run 12 chains of 2500 samples keeping B = 20 and δ = 0.1 fixed.
• Phase one: σ large then posterior is not filamentary and HMC is better.
• Phase two: σ small and THUG superior.
• Phase three: σ very small and C-HMC is more advantageous.

Figure 2: minESS over total runtime (in seconds).

18



ABC - G and K distribution - Computational Cost

• min-bulk-ESS across 4 chains of 1000 samples each for increasing
dimensionalitym ∈ {50, 100, 200}.

• Run algorithms for B ∈ {1, 10, 50}, ϵ ∈ {100, . . . , 10−8} and
α ∈ {0, 0.9, 0.99}.

Figure 3: minESS over total runtime (in seconds).
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ABC - G and K distribution - Density Estimation

10k samples after an initial warmup. Each algorithm run at their best ϵ.
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Conclusion and Future Work

• Real-world applications.

• Comparing manifold and filamentary distributions.

• Develop a suitable notion of ESS of these problems.
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Thank you
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SMC Results - Fixed Step Size
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SMC Results - Adapting Both
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SMC Results - RWM followed by THUG
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THUGMCMC III

Aim of Experiment
Does the acceptance probability of Hug/Thug deteriorate at slower rate
than HMC/RM-HMC with respect to step size?

• Run Thug, Hug, RM-HMC and HMC to target filamentary posterior

pσ(θ | y) ∝ p(θ)N (h(θ), σ2I).

and C-HMC to target lifted manifold posterior

p(θ, η | y) ∝ p(θ)p(η)|Jfσ (θ, η)Jfσ (θ, η)⊤|−1/2

• Run across a grid of noise scale σ ∈ (1× 10−5, 1.0) and step-sizes
δ ∈ (1× 10−5, 1.0), keeping number of steps/bounces per iteration
B = L = 20 fixed.

• Average acceptance probability across 10 runs of 50 samples.
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Thug MCMC IV

HMC and RM-HMC need O(δ) = O(σ) for a good acceptance probability.
Hug and Thug can achieve the same acceptance probability with 3 order of
magnitude larger step-size.
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Acceptance Probability vs Discretization Order

• Ludkin & Sherlock (2019) showed that when f = ℓ, H is γ-Lipschitz
and bounded above by β > 0 Hug satisfies

|ℓB − ℓ0| ≤
δ2

8
∥v0∥2(2β + γT∥v0∥) =: BHUG

Thug satisfies a tighter bound when α > 0 and ĝ⊤0 v0 ̸= 0

|ℓB − ℓ0| ≤ BHUG −
α(2− α)δ2(ĝ⊤0 v0)2

8
(2β + γT∥v0∥) =: BTHUG.

• When f ̸= ℓ will require assumptions on relationship between f and ℓ

pϵ(x | y) ∝ p(x)kϵ(∥y − f(x)∥)
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GPV for Partitioned Systems

For a Partitioned ODE

ẋ = F1(x, v)

v̇ = F2(x, v)

the Generalized Position Verlet (GPV) integrator

xn+1/2 = xn +
δ

2
F1(xn+1/2, vn)

vn+1 = vn +
δ

2

[
F2(xn+1/2, vn) + F2(xn+1/2, vn+1)

]
xn+1 = xn+1/2 +

δ

2
F1(xn+1/2, vn+1)

is implicit, second-order, symmetric and symplectic.

32



GPV for Separable Systems

For a Separable ODE

ẋ = F1(v)

v̇ = F2(x)

the GPV integrator

xn+1/2 = xn +
δ

2
F1(vn)

vn+1 = vn + δF2(xn+1/2)

xn+1 = xn+1/2 +
δ

2
F1(vn+1)

is explicit, second-order, symmetric and symplectic.
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Alternative Integrator I

Although in general the Generalized Position Verlet for a non-separable
system is implicit, it turns out that one can actually solve explicitly for vn+1

in the velocity update.

vn+1 = vn −
δ

2

v⊤nHF (xn+1/2vn

∥∇xF (xn+1/2)∥
∇̂xF (xn+1/2)︸ ︷︷ ︸

:=a

−δ
2

∇̂xF (xn+1/2)

∥∇xF (xn+1/2)∥︸ ︷︷ ︸
=:b

v⊤n+1HF (xn+1/2)vn+1,

then the expression has the form (we writeHn+1/2 = H(xn+1/2))

vn+1 = a+ bv⊤n+1Hn+1/2vn+1.

This can be solved by solving a simple quadratic equation for ϑ

c1ϑ
2 + (2c2 − 1)ϑ+ c3 = 0
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Alternative Integrator II

where

c1 = b⊤Hn+1/2b

c2 = a⊤Hn+1/2b

c3 = a⊤Hn+1/2a.

Interestingly, this discretization works well for sampling from filamentary
distributions only when the initial velocity is perpendicular to the gradient at
the initial position v0 ⊥ ĝ0, otherwise it quickly blows up. This is in contrast
with the generalised Hug algorithm which remains stable thanks to the BPS
reflection mechanism.
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A General Approximate Manifold Sampling Framework

Let π be a filamentary distribution whose limiting manifold distribution is π.
A general approximate manifold sampling algorithm consists of a triplet
(Hp,Φ,Ha) where

• Hp is a Hamiltonian system that forms the base of our proposal
mechanism. A goodHp would follow/stay close toM and perhaps be a
good Hamiltonian system for π.

• Φ is a reversible (or skew-reversible) integrator forHp of suitably high
order and preferably with | det JΦ| = 1, symplecticity is desired but not
needed.

• Ha is a Hamiltonian that determines which samples get accepted or
rejected. This should include π for the algorithm to be correct.
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Contours of Filamentary Distribution
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Tangential Hug Stays closer
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Manifold Distributions I

Transformation of Random Variable by Diffeomorphism
Let X be an Rn-valued random vector with density pX . Let f : Rn → Rn

be a diffeomorphism and Y = f(X). Then

pY (y)dy = pX(f−1(y))| det Jf−1(y)|dy

The Co-Area formula for Lipschitz functions generalizes the above results to
non-injective functions (see Theorem 5.3.9 in Federer (2014)).

Conditional Density of Random Variable on Submanifold
Let X be an Rn-valued random vector with density pX . Let f : Rn → Rm

be a smooth function with n > m, and let y ∈ Rm. Then on the
sub-manifold f−1(y)

p(x | f(x) = y)Hn−m(dx) ∝ pX(x)| det(Jf (x)Jf (x)⊤)|−1/2Hn−m(dx)
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Manifold Distributions II

Assumption 2
π admits a density with respect to the Hausdorff measure onM.

Manifold Distribution
Let X : Ω→ Rn be a vector-valued random variable with distribution π
and finite covariance matrix Vπ[X], and let f : Rn → R be a smooth
function. Consider y ∈ R fixed, then at any point ξ ∈ f−1(y) we denote
by ĝ(ξ) the normalized gradient of f and by T(ξ) = {t̂1(ξ), . . . , t̂n−1(ξ)}
a basis for the tangent space at ξ. Then π is a manifold distribution if
∀ξ ∈ Rn and ∀t̂i(ξ) ∈ T(ξ)

ĝ(ξ)⊤Vπ[X]ĝ(ξ) = 0 and t̂i(ξ)
⊤Vπ[X]t̂i(ξ) > 0.

Typically obtained as limiting posterior density as some scale parameter
goes to zero.
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Manifold Distribution III

Manifold Distribution
Let U be an Rn-valued random variable, and f : Rn → Rm be smooth.
Let K(y, du) be a regular conditional distribution of U given σ(f(U)) and
letHn−m

y be the Hausdorff measure on f−1(y). If K(y, ·)≪ Hn−m
y then

π = K(y, ·) is a manifold distribution.
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Manifold Distribution IV

Graham’s Theorem Revisited
Let (Ω,F ,P) be a probability space, U : Ω→ Rn be a random vector with
distribution PU and density pU with respect to λn, the Lebesgue measure
on (Rn,B(Rn)). Let n >m and f : Rn → Rm be a smooth function with
Jacobian matrix Jf (u) having full row-rank λn-almost everywhere, and let
f ◦ U have distribution Pf = PU ◦ f−1. Let σ(f) be the sigma-algebra
generated by f ◦ U , and let ϕ : Rn → R be a B(Rn)-measurable test
function. Let K(y, du) be a RCD of U given σ(f) from (Rm, σ(f)) to
(Rn,B(Rn)), such that K(y, ·)≪ Hn−m. Then expectations with respect
to K can be written as

E[ϕ(U) | f(U) = y] =

∫
f−1({y})

ϕ(u)ky(u)Hn−m(du)

where ky(u) is the density of K(y, ·) on f−1({y}) with respect toHn−m,
given by

ky(u) ∝ pU (u)
∣∣det Jf (u)Jf (u)⊤∣∣−1/2

.
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When is f−1(y) a submanifold?

Let X and Y be manifolds and f : X → Y be smooth.

Regular Value
Then y ∈ Y is a regular value for f if for all x ∈ f−1(y) the differential
dfx : TxX → TyY is surjective. (alternatively, f is a submersion at every
x ∈ f−1(y)).

Preimage Theorem
If y ∈ Y is a regular value of f then f−1(y) is a submanifold of X .

43



Filamentary Distributions

Assumption 1
Manifold of interest has co-dimension 1.

Filamentary Distribution
Let X : Ω→ Rn be a vector-valued random variable with distribution π
and finite covariance matrix Vπ[X], and let f : Rn → R be a smooth
function. Consider y ∈ R fixed, then at any point ξ ∈ f−1(y) we denote
by ĝ(ξ) the normalized gradient of f and by T(ξ) = {t̂1(ξ), . . . , t̂n−1(ξ)}
a basis for the tangent space at ξ. We say that π is a filamentary
distribution if

∀ξ ∈ Rn, ∀t̂i(ξ) ∈ T(ξ) 0 < ĝ(ξ)⊤Vπ[X]ĝ(ξ)≪ t̂i(ξ)
⊤Vπ[X]t̂i(ξ).

In practice one doesn’t need to check the definition, it will be clear if the
posterior has a filamentary structure.

• Filamentary distributions are highly concentrated around a submanifold.
• Orthogonal scaling≪ tangential scaling. 44
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